Question Number 7395 by 2402@gmail.com last updated on 26/Aug/16
$${Q}.\:{An}\:{AP}\:{has}\:{even}\:{number}\:{of}\:{terms} \\ $$$$\:\:\:\:\:\:\:{the}\:{sum}\:{of}\:{odd}\:{terms}\:{is}\:\mathrm{24}\:{and}\: \\ $$$$\:\:\:\:\:\:{of}\:{even}\:{terms}\:{is}\:\mathrm{30}.\:{the}\:{last}\:{term} \\ $$$$\:\:\:\:\:{exceeds}\:{the}\:{first}\:{term}\:{by}\:\mathrm{10}\frac{\mathrm{1}}{\mathrm{2}}\:. \\ $$$$\:\:\:\:\:{find}\:{AP}\:{and}\:{number}\:{of}\:{terms}. \\ $$
Commented by Yozzia last updated on 26/Aug/16
$${Let}\:{n}=\mathrm{2}{k}\:{be}\:{number}\:{of}\:{terms}. \\ $$$${Let}\:{u}\left({t}\right)={a}+\left({t}−\mathrm{1}\right){d}\:{for}\:{fixed}\:{a}\:{and}\:{d}. \\ $$$${All}\:{even}\:{terms}\:{are}\:{u}\left(\mathrm{2}\right),{u}\left(\mathrm{4}\right),{u}\left(\mathrm{6}\right)…{u}\left(\mathrm{2}{t}\right),…{u}\left(\mathrm{2}{k}\right). \\ $$$$\therefore{u}\left(\mathrm{2}{t}\right)={a}+\left(\mathrm{2}{t}−\mathrm{1}\right){d}={h}\left({t}\right) \\ $$$${All}\:{odd}\:{terms}\:{are}\:{u}\left(\mathrm{1}\right),{u}\left(\mathrm{3}\right),{u}\left(\mathrm{5}\right),…,{u}\left(\mathrm{2}{t}−\mathrm{1}\right),…{u}\left(\mathrm{2}{k}−\mathrm{1}\right). \\ $$$$\therefore{u}\left(\mathrm{2}{t}−\mathrm{1}\right)={a}+\left(\mathrm{2}{t}−\mathrm{2}\right){d}={a}+\mathrm{2}\left({t}−\mathrm{1}\right){d}={g}\left({t}\right). \\ $$$${Now},\:\underset{{t}=\mathrm{1}} {\overset{{k}} {\sum}}{g}\left({t}\right)=\mathrm{24}\:{and}\:\underset{{t}=\mathrm{1}} {\overset{{k}} {\sum}}{h}\left({t}\right)=\mathrm{30}. \\ $$$$\underset{{t}=\mathrm{1}} {\overset{{k}} {\sum}}{g}\left({t}\right)=\mathrm{24}\:\Leftrightarrow\:\underset{{t}=\mathrm{1}} {\overset{{k}} {\sum}}\left({a}+\mathrm{2}{d}\left({t}−\mathrm{1}\right)\right)=\mathrm{24} \\ $$$$\Leftrightarrow\underset{{t}=\mathrm{1}} {\overset{{k}} {\sum}}\left({a}−\mathrm{2}{d}\right)+\mathrm{2}{d}\underset{{t}=\mathrm{1}} {\overset{{k}} {\sum}}{t}=\left({a}−\mathrm{2}{d}\right){k}+{dk}\left({k}+\mathrm{1}\right)=\mathrm{24} \\ $$$${or}\:\mathrm{24}={k}\left({a}+{dk}−{d}\right)\:{or}\:\mathrm{24}={k}\left({a}+{dk}\right)−{kd}….\left(\mathrm{1}\right) \\ $$$$\underset{{t}=\mathrm{1}} {\overset{{k}} {\sum}}{h}\left({t}\right)=\mathrm{30}\Leftrightarrow\underset{{t}=\mathrm{1}} {\overset{{k}} {\sum}}\left({a}+\left(\mathrm{2}{t}−\mathrm{1}\right){d}\right)=\mathrm{30} \\ $$$$\Leftrightarrow\underset{{t}=\mathrm{1}} {\overset{{k}} {\sum}}\left({a}−{d}\right)+\mathrm{2}{d}\underset{{t}=\mathrm{1}} {\overset{{k}} {\sum}}{t}=\mathrm{30}\Leftrightarrow{k}\left({a}−{d}\right)+{dk}\left({k}+\mathrm{1}\right)=\mathrm{30} \\ $$$${or}\:{k}\left({a}+{dk}\right)=\mathrm{30}……\left(\mathrm{2}\right) \\ $$$${Comparing}\:\left(\mathrm{1}\right)\:{and}\:\left(\mathrm{2}\right),\:\left(\mathrm{1}\right)\:{becomes} \\ $$$$\mathrm{24}=\mathrm{30}−{kd}\Rightarrow{kd}=\mathrm{6}\:{or}\:{k}=\frac{\mathrm{6}}{{d}}….\left(\mathrm{3}\right) \\ $$$${The}\:{last}\:{term}\:{is}\:{given}\:{by}\:{u}\left(\mathrm{2}{k}\right)={a}+\left(\mathrm{2}{k}−\mathrm{1}\right){d} \\ $$$${and}\:{u}\left(\mathrm{2}{k}\right)−{a}=\frac{\mathrm{21}}{\mathrm{2}}.\:\therefore\:\left(\mathrm{2}{k}−\mathrm{1}\right){d}=\frac{\mathrm{21}}{\mathrm{2}}. \\ $$$${But}\:{from}\:\left(\mathrm{3}\right),\:{k}=\frac{\mathrm{6}}{{d}}.\:\therefore\:{d}\left(\frac{\mathrm{12}}{{d}}−\mathrm{1}\right)=\frac{\mathrm{21}}{\mathrm{2}} \\ $$$$\mathrm{12}−{d}=\frac{\mathrm{21}}{\mathrm{2}}\Rightarrow{d}=\mathrm{12}−\frac{\mathrm{21}}{\mathrm{2}}=\frac{\mathrm{24}−\mathrm{21}}{\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{2}}. \\ $$$$\therefore{k}=\frac{\mathrm{6}}{\mathrm{3}/\mathrm{2}}=\mathrm{4}.\: \\ $$$${In}\:\left(\mathrm{2}\right)\:\Rightarrow\mathrm{4}\left({a}+\mathrm{4}×\frac{\mathrm{3}}{\mathrm{2}}\right)=\mathrm{30} \\ $$$$\mathrm{4}{a}+\mathrm{24}=\mathrm{30}\:{or}\:{a}=\frac{\mathrm{3}}{\mathrm{2}}. \\ $$$${The}\:{AP}\:{is}\:{hence}\:{the}\:{sequence}\:\left\{{u}\left({t}\right)\right\}_{{t}=\mathrm{1}} ^{\mathrm{8}} \\ $$$${where}\:{u}\left({t}\right)=\frac{\mathrm{3}}{\mathrm{2}}\left(\mathrm{1}+{t}−\mathrm{1}\right)=\frac{\mathrm{3}{t}}{\mathrm{2}},\:{and}\:{the} \\ $$$${number}\:{of}\:{terms}\:{is}\:\mathrm{2}{k}=\mathrm{2}×\mathrm{4}=\mathrm{8}. \\ $$$$ \\ $$
Answered by Yozzia last updated on 27/Aug/16
$${Check}\:{answer}\:{in}\:{comments}. \\ $$
Answered by Rasheed Soomro last updated on 01/Sep/16
$${Technically}\:{Simple}\:{Approach} \\ $$$${Let}\:{a}\:{is}\:{first}\:{term}\:{and}\:{d}\:{is}\:{a}\:{common}\:{difference}\:{of}\:{the}\:{AP}. \\ $$$${The}\:{AP}\:{will}\:{be} \\ $$$$\:{a},{a}+{d},{a}+\mathrm{2}{d},{a}+\mathrm{3}{d},{a}+\mathrm{4}{d},…{a}+\mathrm{10}\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${Let}\:\:{the}\:{number}\:{of}\:{terms}\:{is}\:\mathrm{2}{k} \\ $$$${a}+\left(\mathrm{2}{k}−\mathrm{1}\right){d}={a}+\mathrm{10}\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow\left(\mathrm{2}{k}−\mathrm{1}\right){d}=\mathrm{10}\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow{d}=\frac{\mathrm{21}}{\mathrm{2}\left(\mathrm{2}{k}−\mathrm{1}\right)} \\ $$$${Now}\:{the}\:{AP}\:{will}\:{be} \\ $$$$\:{a},{a}+\left(\frac{\mathrm{21}}{\mathrm{2}\left(\mathrm{2}{k}−\mathrm{1}\right)}\right),{a}+\mathrm{2}\left(\frac{\mathrm{21}}{\mathrm{2}\left(\mathrm{2}{k}−\mathrm{1}\right)}\right),{a}+\mathrm{3}\left(\frac{\mathrm{21}}{\mathrm{2}\left(\mathrm{2}{k}−\mathrm{1}\right)}\right),{a}+\mathrm{4}\left(\frac{\mathrm{21}}{\mathrm{2}\left(\mathrm{2}{k}−\mathrm{1}\right)}\right),…{a}+\mathrm{10}\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$$${The}\:{sum}\:{of}\:{odd}\:{terms} \\ $$$${a}+\left({a}+\mathrm{2}\left(\frac{\mathrm{21}}{\mathrm{2}\left(\mathrm{2}{k}−\mathrm{1}\right)}\right)\right)+\left({a}+\mathrm{4}\left(\frac{\mathrm{21}}{\mathrm{2}\left(\mathrm{2}{k}−\mathrm{1}\right)}\right)\right)+…+\left({a}+\mathrm{10}\frac{\mathrm{1}}{\mathrm{2}}−\left(\frac{\mathrm{21}}{\mathrm{2}\left(\mathrm{2}{k}−\mathrm{1}\right)}\right)\right)…..{k}\:{terms} \\ $$$${S}=\frac{{n}}{\mathrm{2}}\left({a}+{l}\right)\::\:{a}\:{first}\:{term},{l}\:{last}\:{term},\:{n}\:{number}\:{of}\:{terms},\:{S}\:{sum}. \\ $$$$\:\:\:\:\:\:\:\:{S}_{{o}} =\frac{{k}}{\mathrm{2}}\left(\:{a}+\left({a}−\left(\frac{\mathrm{21}}{\mathrm{2}\left(\mathrm{2}{k}−\mathrm{1}\right)}\right)+\mathrm{10}\frac{\mathrm{1}}{\mathrm{2}}\right)\:\right)=\mathrm{24} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{k}\left(\:\mathrm{2}{a}+\mathrm{10}\frac{\mathrm{1}}{\mathrm{2}}−\left(\frac{\mathrm{21}}{\mathrm{2}\left(\mathrm{2}{k}−\mathrm{1}\right)}\right)\right)=\mathrm{48} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}{ak}+\mathrm{10}.\mathrm{5}{k}−{k}\left(\frac{\mathrm{21}}{\mathrm{2}\left(\mathrm{2}{k}−\mathrm{1}\right)}\right)=\mathrm{48}…………….\left({i}\right) \\ $$$${Sum}\:{of}\:{even}\:{terms} \\ $$$$\left({a}+\left(\frac{\mathrm{21}}{\mathrm{2}\left(\mathrm{2}{k}−\mathrm{1}\right)}\right)\right)+\left({a}+\mathrm{3}\left(\frac{\mathrm{21}}{\mathrm{2}\left(\mathrm{2}{k}−\mathrm{1}\right)}\right)\right)+\left({a}+\mathrm{5}\left(\frac{\mathrm{21}}{\mathrm{2}\left(\mathrm{2}{k}−\mathrm{1}\right)}\right)\right)+…{a}+\mathrm{10}\frac{\mathrm{1}}{\mathrm{2}}….{k}\:{terms} \\ $$$$\:\:\:\:\:\:\:{S}_{{e}} =\frac{{k}}{\mathrm{2}}\left(\:\left({a}+\frac{\mathrm{21}}{\mathrm{2}\left(\mathrm{2}{k}−\mathrm{1}\right)}\right)+\left({a}+\mathrm{10}\frac{\mathrm{1}}{\mathrm{2}}\right)\:\right)=\mathrm{30} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{k}\left(\mathrm{2}{a}+\mathrm{10}\frac{\mathrm{1}}{\mathrm{2}}+\left(\frac{\mathrm{21}}{\mathrm{2}\left(\mathrm{2}{k}−\mathrm{1}\right)}\right)\right)=\mathrm{60} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}{ak}+\mathrm{10}.\mathrm{5}{k}+{k}\left(\frac{\mathrm{21}}{\mathrm{2}\left(\mathrm{2}{k}−\mathrm{1}\right)}\right)=\mathrm{60}…………….\left({ii}\right) \\ $$$$\left({ii}\right)−\left({i}\right):\:\:\:\mathrm{2}{k}\left(\frac{\mathrm{21}}{\mathrm{2}\left(\mathrm{2}{k}−\mathrm{1}\right)}\right)=\mathrm{12}\Rightarrow{k}\left(\frac{\mathrm{21}}{\mathrm{2}\left(\mathrm{2}{k}−\mathrm{1}\right)}\right)=\mathrm{6}\Rightarrow\mathrm{21}{k}=\mathrm{12}\left(\mathrm{2}{k}−\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{24}{k}−\mathrm{21}{k}=\mathrm{12}\Rightarrow{k}=\mathrm{4} \\ $$$$\left({ii}\right)+\left({i}\right):\:\:\:\:{k}\left(\mathrm{4}{a}+\mathrm{21}\right)=\mathrm{108}\Rightarrow\mathrm{4}{a}+\mathrm{21}=\mathrm{108}/{k}=\mathrm{108}/\mathrm{4}=\mathrm{27} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{4}{a}=\mathrm{6}\Rightarrow{a}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${The}\:{first}\:{term}\:\:{of}\:{the}\:{AP}\:\:{is}\:\:\frac{\mathrm{3}}{\mathrm{2}}\:{and}\: \\ $$$${common}\:{difference}\:{is}\:\frac{\mathrm{21}}{\mathrm{2}\left(\mathrm{2}{k}−\mathrm{1}\right)}=\frac{\mathrm{21}}{\mathrm{2}\left(\mathrm{2}\left(\mathrm{4}\right)−\mathrm{1}\right)}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${Hence}\:{The}\:{AP}\:{is} \\ $$$$\frac{\mathrm{3}}{\mathrm{2}},\mathrm{3},\frac{\mathrm{9}}{\mathrm{2}},\mathrm{6},\frac{\mathrm{15}}{\mathrm{2}},\mathrm{9},\frac{\mathrm{21}}{\mathrm{2}},\mathrm{12}\:\:\:\:\:\:\:\:\:\:\:\left(\:\mathrm{8}\:{terms}\:\right) \\ $$