Menu Close

Q-An-AP-has-even-number-of-terms-the-sum-of-odd-terms-is-24-and-of-even-terms-is-30-the-last-term-exceeds-the-first-term-by-10-1-2-find-AP-and-number-of-terms-




Question Number 7395 by 2402@gmail.com last updated on 26/Aug/16
Q. An AP has even number of terms         the sum of odd terms is 24 and         of even terms is 30. the last term       exceeds the first term by 10(1/2) .       find AP and number of terms.
Q.AnAPhasevennumberoftermsthesumofoddtermsis24andofeventermsis30.thelasttermexceedsthefirsttermby1012.findAPandnumberofterms.
Commented by Yozzia last updated on 26/Aug/16
Let n=2k be number of terms.  Let u(t)=a+(t−1)d for fixed a and d.  All even terms are u(2),u(4),u(6)...u(2t),...u(2k).  ∴u(2t)=a+(2t−1)d=h(t)  All odd terms are u(1),u(3),u(5),...,u(2t−1),...u(2k−1).  ∴u(2t−1)=a+(2t−2)d=a+2(t−1)d=g(t).  Now, Σ_(t=1) ^k g(t)=24 and Σ_(t=1) ^k h(t)=30.  Σ_(t=1) ^k g(t)=24 ⇔ Σ_(t=1) ^k (a+2d(t−1))=24  ⇔Σ_(t=1) ^k (a−2d)+2dΣ_(t=1) ^k t=(a−2d)k+dk(k+1)=24  or 24=k(a+dk−d) or 24=k(a+dk)−kd....(1)  Σ_(t=1) ^k h(t)=30⇔Σ_(t=1) ^k (a+(2t−1)d)=30  ⇔Σ_(t=1) ^k (a−d)+2dΣ_(t=1) ^k t=30⇔k(a−d)+dk(k+1)=30  or k(a+dk)=30......(2)  Comparing (1) and (2), (1) becomes  24=30−kd⇒kd=6 or k=(6/d)....(3)  The last term is given by u(2k)=a+(2k−1)d  and u(2k)−a=((21)/2). ∴ (2k−1)d=((21)/2).  But from (3), k=(6/d). ∴ d(((12)/d)−1)=((21)/2)  12−d=((21)/2)⇒d=12−((21)/2)=((24−21)/2)=(3/2).  ∴k=(6/(3/2))=4.   In (2) ⇒4(a+4×(3/2))=30  4a+24=30 or a=(3/2).  The AP is hence the sequence {u(t)}_(t=1) ^8   where u(t)=(3/2)(1+t−1)=((3t)/2), and the  number of terms is 2k=2×4=8.
Letn=2kbenumberofterms.Letu(t)=a+(t1)dforfixedaandd.Alleventermsareu(2),u(4),u(6)u(2t),u(2k).u(2t)=a+(2t1)d=h(t)Alloddtermsareu(1),u(3),u(5),,u(2t1),u(2k1).u(2t1)=a+(2t2)d=a+2(t1)d=g(t).Now,kt=1g(t)=24andkt=1h(t)=30.kt=1g(t)=24kt=1(a+2d(t1))=24kt=1(a2d)+2dkt=1t=(a2d)k+dk(k+1)=24or24=k(a+dkd)or24=k(a+dk)kd.(1)kt=1h(t)=30kt=1(a+(2t1)d)=30kt=1(ad)+2dkt=1t=30k(ad)+dk(k+1)=30ork(a+dk)=30(2)Comparing(1)and(2),(1)becomes24=30kdkd=6ork=6d.(3)Thelasttermisgivenbyu(2k)=a+(2k1)dandu(2k)a=212.(2k1)d=212.Butfrom(3),k=6d.d(12d1)=21212d=212d=12212=24212=32.k=63/2=4.In(2)4(a+4×32)=304a+24=30ora=32.TheAPishencethesequence{u(t)}t=18whereu(t)=32(1+t1)=3t2,andthenumberoftermsis2k=2×4=8.
Answered by Yozzia last updated on 27/Aug/16
Check answer in comments.
Checkanswerincomments.
Answered by Rasheed Soomro last updated on 01/Sep/16
Technically Simple Approach  Let a is first term and d is a common difference of the AP.  The AP will be   a,a+d,a+2d,a+3d,a+4d,...a+10(1/2)  Let  the number of terms is 2k  a+(2k−1)d=a+10(1/2)⇒(2k−1)d=10(1/2)⇒d=((21)/(2(2k−1)))  Now the AP will be   a,a+(((21)/(2(2k−1)))),a+2(((21)/(2(2k−1)))),a+3(((21)/(2(2k−1)))),a+4(((21)/(2(2k−1)))),...a+10(1/2)    The sum of odd terms  a+(a+2(((21)/(2(2k−1)))))+(a+4(((21)/(2(2k−1)))))+...+(a+10(1/2)−(((21)/(2(2k−1))))).....k terms  S=(n/2)(a+l) : a first term,l last term, n number of terms, S sum.          S_o =(k/2)( a+(a−(((21)/(2(2k−1))))+10(1/2)) )=24               k( 2a+10(1/2)−(((21)/(2(2k−1)))))=48               2ak+10.5k−k(((21)/(2(2k−1))))=48................(i)  Sum of even terms  (a+(((21)/(2(2k−1)))))+(a+3(((21)/(2(2k−1)))))+(a+5(((21)/(2(2k−1)))))+...a+10(1/2)....k terms         S_e =(k/2)( (a+((21)/(2(2k−1))))+(a+10(1/2)) )=30               k(2a+10(1/2)+(((21)/(2(2k−1)))))=60               2ak+10.5k+k(((21)/(2(2k−1))))=60................(ii)  (ii)−(i):   2k(((21)/(2(2k−1))))=12⇒k(((21)/(2(2k−1))))=6⇒21k=12(2k−1)                                     24k−21k=12⇒k=4  (ii)+(i):    k(4a+21)=108⇒4a+21=108/k=108/4=27                                   4a=6⇒a=(3/2)  The first term  of the AP  is  (3/2) and   common difference is ((21)/(2(2k−1)))=((21)/(2(2(4)−1)))=(3/2)  Hence The AP is  (3/2),3,(9/2),6,((15)/2),9,((21)/2),12           ( 8 terms )
TechnicallySimpleApproachLetaisfirsttermanddisacommondifferenceoftheAP.TheAPwillbea,a+d,a+2d,a+3d,a+4d,a+1012Letthenumberoftermsis2ka+(2k1)d=a+1012(2k1)d=1012d=212(2k1)NowtheAPwillbea,a+(212(2k1)),a+2(212(2k1)),a+3(212(2k1)),a+4(212(2k1)),a+1012Thesumofoddtermsa+(a+2(212(2k1)))+(a+4(212(2k1)))++(a+1012(212(2k1)))..ktermsS=n2(a+l):afirstterm,llastterm,nnumberofterms,Ssum.So=k2(a+(a(212(2k1))+1012))=24k(2a+1012(212(2k1)))=482ak+10.5kk(212(2k1))=48.(i)Sumofeventerms(a+(212(2k1)))+(a+3(212(2k1)))+(a+5(212(2k1)))+a+1012.ktermsSe=k2((a+212(2k1))+(a+1012))=30k(2a+1012+(212(2k1)))=602ak+10.5k+k(212(2k1))=60.(ii)(ii)(i):2k(212(2k1))=12k(212(2k1))=621k=12(2k1)24k21k=12k=4(ii)+(i):k(4a+21)=1084a+21=108/k=108/4=274a=6a=32ThefirsttermoftheAPis32andcommondifferenceis212(2k1)=212(2(4)1)=32HenceTheAPis32,3,92,6,152,9,212,12(8terms)

Leave a Reply

Your email address will not be published. Required fields are marked *