Q-An-AP-has-even-number-of-terms-the-sum-of-odd-terms-is-24-and-of-even-terms-is-30-the-last-term-exceeds-the-first-term-by-10-1-2-find-AP-and-number-of-terms- Tinku Tara June 3, 2023 Others 0 Comments FacebookTweetPin Question Number 7395 by 2402@gmail.com last updated on 26/Aug/16 Q.AnAPhasevennumberoftermsthesumofoddtermsis24andofeventermsis30.thelasttermexceedsthefirsttermby1012.findAPandnumberofterms. Commented by Yozzia last updated on 26/Aug/16 Letn=2kbenumberofterms.Letu(t)=a+(t−1)dforfixedaandd.Alleventermsareu(2),u(4),u(6)…u(2t),…u(2k).∴u(2t)=a+(2t−1)d=h(t)Alloddtermsareu(1),u(3),u(5),…,u(2t−1),…u(2k−1).∴u(2t−1)=a+(2t−2)d=a+2(t−1)d=g(t).Now,∑kt=1g(t)=24and∑kt=1h(t)=30.∑kt=1g(t)=24⇔∑kt=1(a+2d(t−1))=24⇔∑kt=1(a−2d)+2d∑kt=1t=(a−2d)k+dk(k+1)=24or24=k(a+dk−d)or24=k(a+dk)−kd….(1)∑kt=1h(t)=30⇔∑kt=1(a+(2t−1)d)=30⇔∑kt=1(a−d)+2d∑kt=1t=30⇔k(a−d)+dk(k+1)=30ork(a+dk)=30……(2)Comparing(1)and(2),(1)becomes24=30−kd⇒kd=6ork=6d….(3)Thelasttermisgivenbyu(2k)=a+(2k−1)dandu(2k)−a=212.∴(2k−1)d=212.Butfrom(3),k=6d.∴d(12d−1)=21212−d=212⇒d=12−212=24−212=32.∴k=63/2=4.In(2)⇒4(a+4×32)=304a+24=30ora=32.TheAPishencethesequence{u(t)}t=18whereu(t)=32(1+t−1)=3t2,andthenumberoftermsis2k=2×4=8. Answered by Yozzia last updated on 27/Aug/16 Checkanswerincomments. Answered by Rasheed Soomro last updated on 01/Sep/16 TechnicallySimpleApproachLetaisfirsttermanddisacommondifferenceoftheAP.TheAPwillbea,a+d,a+2d,a+3d,a+4d,…a+1012Letthenumberoftermsis2ka+(2k−1)d=a+1012⇒(2k−1)d=1012⇒d=212(2k−1)NowtheAPwillbea,a+(212(2k−1)),a+2(212(2k−1)),a+3(212(2k−1)),a+4(212(2k−1)),…a+1012Thesumofoddtermsa+(a+2(212(2k−1)))+(a+4(212(2k−1)))+…+(a+1012−(212(2k−1)))…..ktermsS=n2(a+l):afirstterm,llastterm,nnumberofterms,Ssum.So=k2(a+(a−(212(2k−1))+1012))=24k(2a+1012−(212(2k−1)))=482ak+10.5k−k(212(2k−1))=48…………….(i)Sumofeventerms(a+(212(2k−1)))+(a+3(212(2k−1)))+(a+5(212(2k−1)))+…a+1012….ktermsSe=k2((a+212(2k−1))+(a+1012))=30k(2a+1012+(212(2k−1)))=602ak+10.5k+k(212(2k−1))=60…………….(ii)(ii)−(i):2k(212(2k−1))=12⇒k(212(2k−1))=6⇒21k=12(2k−1)24k−21k=12⇒k=4(ii)+(i):k(4a+21)=108⇒4a+21=108/k=108/4=274a=6⇒a=32ThefirsttermoftheAPis32andcommondifferenceis212(2k−1)=212(2(4)−1)=32HenceTheAPis32,3,92,6,152,9,212,12(8terms) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-138460Next Next post: Question-72930 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.