Menu Close

Question-10223




Question Number 10223 by amir last updated on 30/Jan/17
Answered by mrW1 last updated on 03/Feb/17
to question 1:    xy=1  y=(1/x)  y′=−(1/x^2 )  let B a point on the curve and AB is  a orthogonal line to the curve.  let point B have the coordinates (t, s).  s=(1/t)    the slope of tangent line on point B:  m_t =y′(t)=−(1/t^2 )    the slope of the orthogonal line:  m_o =−(1/m_t )=t^2     the equation of the orthogonal line:  y−s=m_o (x−t)  y−(1/t)=t^2 (x−t)    since A(a,a) is a point on it, we get  a−(1/t)=t^2 (a−t)  t^4 −at^3 +at−1=0  (t+1)(t−1)(t^2 −at+1)=0  ⇒t_1 =−1 (point D) or  ⇒t_2 =1 (point C) or  ⇒t−at+1=0  ⇒⇒t_(3,4) =((a±(√(a^2 −4)))/2)  if ∣a∣<2, t_(3,4)  =unreal  if ∣a∣=2, t_(3,4)  =1=t_2   if ∣a∣>2, t_(3,4)  =((a±(√(a^2 −4)))/2) (point B and B′)    i.e. for any point A(a,a) there are  at least 2 orthogonal lines (AC, AD).  if ∣a∣>2, there are even 2 additional  orthogonal lines (AB,AB′).
toquestion1:xy=1y=1xy=1x2letBapointonthecurveandABisaorthogonallinetothecurve.letpointBhavethecoordinates(t,s).s=1ttheslopeoftangentlineonpointB:mt=y(t)=1t2theslopeoftheorthogonalline:mo=1mt=t2theequationoftheorthogonalline:ys=mo(xt)y1t=t2(xt)sinceA(a,a)isapointonit,wegeta1t=t2(at)t4at3+at1=0(t+1)(t1)(t2at+1)=0t1=1(pointD)ort2=1(pointC)ortat+1=0⇒⇒t3,4=a±a242ifa∣<2,t3,4=unrealifa∣=2,t3,4=1=t2ifa∣>2,t3,4=a±a242(pointBandB)i.e.foranypointA(a,a)thereareatleast2orthogonallines(AC,AD).ifa∣>2,thereareeven2additionalorthogonallines(AB,AB).
Commented by mrW1 last updated on 02/Feb/17
Commented by amir last updated on 02/Feb/17
thank you so much.but Q no.2 and no.3 ?
thankyousomuch.butQno.2andno.3?
Commented by amir last updated on 02/Feb/17
with which program i can draw this    diagrams?
withwhichprogramicandrawthisdiagrams?
Commented by mrW1 last updated on 03/Feb/17
please try the app geogebra.
pleasetrytheappgeogebra.
Answered by mrW1 last updated on 04/Feb/17
to question 2:    if ∣a∣≤2, i.e. −2≤a≤2, there are only  2 orthogonal lines from point A:  AD with slope = 45°  AC with slope = 45°  the angel between them is 0°.    if ∣a∣>2, i.e. a<−2 or a>2, there are  4 orthogonal lines from point A:  AD with slope = 45°  AC with slope = 45°  the angel between them is 0°.  AB with slope angel, lets say α_1   AB′ with slope angel, lets say α_2   the angel between them is, lets say α  α=α_1 −α_2   tan α_1 =−(1/(f′(t_3 )))=t_3 ^2 =(((a+(√(a^2 −4)))/2))^2   tan α_2 =−(1/(f′(t_4 )))=t_4 ^2 =(((a−(√(a^2 −4)))/2))^2   tan α=tan (α_1 −α_2 )=((tan α_1 −tan α_2 )/(1+tan _1 tan α_2 ))  =(((((a+(√(a^2 −4)))/2))^2 −(((a−(√(a^2 −4)))/2))^2 )/(1+(((a+(√(a^2 −4)))/2))^2 (((a−(√(a^2 −4)))/2))^2 ))  =4×(((a+(√(a^2 −4)))^2 −(a−(√(a^2 −4)))^2 )/(16+(a+(√(a^2 −4)))^2 (a−(√(a^2 −4)))^2 ))   =4×(((a+(√(a^2 −4))+a−(√(a^2 −4)))(a+(√(a^2 −4))−a+(√(a^2 −4))))/(16+(a^2 −a^2 +4)^2 ))  =4×(((2a)(2(√(a^2 −4))))/(32))  =((a(√(a^2 −4)))/2)  α=tan^(−1) (((a(√(a^2 −4)))/2))
toquestion2:ifa∣⩽2,i.e.2a2,thereareonly2orthogonallinesfrompointA:ADwithslope=45°ACwithslope=45°theangelbetweenthemis0°.ifa∣>2,i.e.a<2ora>2,thereare4orthogonallinesfrompointA:ADwithslope=45°ACwithslope=45°theangelbetweenthemis0°.ABwithslopeangel,letssayα1ABwithslopeangel,letssayα2theangelbetweenthemis,letssayαα=α1α2tanα1=1f(t3)=t32=(a+a242)2tanα2=1f(t4)=t42=(aa242)2tanα=tan(α1α2)=tanα1tanα21+tan1tanα2=(a+a242)2(aa242)21+(a+a242)2(aa242)2=4×(a+a24)2(aa24)216+(a+a24)2(aa24)2=4×(a+a24+aa24)(a+a24a+a24)16+(a2a2+4)2=4×(2a)(2a24)32=aa242α=tan1(aa242)
Commented by amir last updated on 04/Feb/17
thank you for evrey thing.but please  check your calculation.i got the angle  α=tan^(−1) ((1/2)a(√(a^2 −4)))
thankyouforevreything.butpleasecheckyourcalculation.igottheangleα=tan1(12aa24)
Commented by mrW1 last updated on 04/Feb/17
your are right. it is fixed now. thank you!
yourareright.itisfixednow.thankyou!
Commented by mrW1 last updated on 04/Feb/17
what about Q1 and Q2 if we have point A(a,−a)?
whataboutQ1andQ2ifwehavepointA(a,a)?
Commented by amir last updated on 08/Feb/17
in case of point B(a,−a) ,there are  only 2 perpendiculare lines.  y=(1/x)⇒y^′ =−(1/x^2 )⇒m_t =−(1/t^2 ),m_p =+t^2   that M(t,(1/t))  and N(s,(1/s)) are the intersection points  of the curve and the per.lines.  olso m_p  be the slope of per_ .line  y−y_M =m_p (x−x_M )⇒y−(1/t)=t^2 (x−t)  −a−(1/t)=t^2 (a−t)⇒t^4 −at^3 −at−1=0  (t^2 +1)(t^2 −at−1)=0, t^2 +1≠0  ⇒t=((a±(√(a^2 +4)))/2)⇒ (((M(((a+(√(a^2 +4)))/2),((a−(√(a^2 +4)))/(−2))))),((N(((a−(√(a^2 +4)))/2),((a+(√(a^2 +4)))/(−2))))) )  m_(BN) =((−a−((a+(√(a^2 +4)))/(−2)))/(a−((a−(√(a^2 +4)))/2)))=(1/4)(a−(√(a^2 +4)))^2   m_(BM) =((−a−((a−(√(a^2 +4)))/(−2)))/(a−((a+(√(a^2 +4)))/2)))=(1/4)(a+(√(a^2 +4)))^2   tan α=∣((m_(BN) −m_(BM) )/(1+m_(BN) ×m_(BM) ))∣=  ∣(((1/4)(a−(√(a^2 +4)))^2 −(1/4)(a+(√(a^2 +4)))^2 )/(1+(1/4)(a−(√(a^2 +4)))^2 ×(1/4)(a+(√(a^2 +4)))^2 ))∣=(1/2)a(√(a^2 +4))  α=tan^(−1) ((1/2)a(√(a^2 +4))) ■
incaseofpointB(a,a),thereareonly2perpendicularelines.y=1xy=1x2mt=1t2,mp=+t2thatM(t,1t)andN(s,1s)aretheintersectionpointsofthecurveandtheper.lines.olsompbetheslopeofper.lineyyM=mp(xxM)y1t=t2(xt)a1t=t2(at)t4at3at1=0(t2+1)(t2at1)=0,t2+10t=a±a2+42(M(a+a2+42,aa2+42)N(aa2+42,a+a2+42))mBN=aa+a2+42aaa2+42=14(aa2+4)2mBM=aaa2+42aa+a2+42=14(a+a2+4)2tanα=∣mBNmBM1+mBN×mBM∣=14(aa2+4)214(a+a2+4)21+14(aa2+4)2×14(a+a2+4)2∣=12aa2+4α=tan1(12aa2+4)◼
Commented by amir last updated on 07/Feb/17
Commented by amir last updated on 07/Feb/17
dear mrW1! please draw a nice diagram  with geogebra and post it here.tnx.
dearmrW1!pleasedrawanicediagramwithgeogebraandpostithere.tnx.
Commented by mrW1 last updated on 08/Feb/17
Commented by amir last updated on 08/Feb/17
thank you very much mrw1.  you are a real mathmatic man.  goodlock!
thankyouverymuchmrw1.youarearealmathmaticman.goodlock!
Answered by mrW1 last updated on 03/Feb/17
to question 3:    if ∣a∣≤2, there are 2 orthogonal lines  from A. the area between them and  the curve is 0.    if ∣a∣>2, there are 4 orthogonal lines  from A.  F_1 =area of ARPB′  F_2 =area of ARQB  F_3 =area of B′BQP  F=area between orthogonal lines           and the curve, ABB′.  F=F_1 −F_2 −F_3   F_1 =(1/2)(a+y_4 )(a−x_4 )=(1/2)(a+(1/t_4 ))(a−t_4 )=(1/2)(a+(2/(a−(√(a^2 −4)))))(a+((a−(√(a^2 −4)))/2))  F_2 =(1/2)(a+y_3 )(a−x_3 )=(1/2)(a+(1/t_3 ))(a−t_3 )=(1/2)(a+(2/(a+(√(a^2 −4)))))(a+((a+(√(a^2 −4)))/2))  F_3 =∫_(x_4  ) ^x_3  (1/x)dx=(ln ∣x∣)∣_t_4  ^t_3  =ln ∣(t_3 /t_4 )∣=ln ∣((a+(√(a^2 −4)))/(a−(√(a^2 −4))))∣    F=(1/2)(a+(2/(a−(√(a^2 −4)))))(a+((a−(√(a^2 −4)))/2))−(1/2)(a+(2/(a+(√(a^2 −4)))))(a+((a+(√(a^2 −4)))/2))−ln ∣((a+(√(a^2 −4)))/(a−(√(a^2 −4))))∣
toquestion3:ifa∣⩽2,thereare2orthogonallinesfromA.theareabetweenthemandthecurveis0.ifa∣>2,thereare4orthogonallinesfromA.F1=areaofARPBF2=areaofARQBF3=areaofBBQPF=areabetweenorthogonallinesandthecurve,ABB.F=F1F2F3F1=12(a+y4)(ax4)=12(a+1t4)(at4)=12(a+2aa24)(a+aa242)F2=12(a+y3)(ax3)=12(a+1t3)(at3)=12(a+2a+a24)(a+a+a242)F3=x4x31xdx=(lnx)t4t3=lnt3t4∣=lna+a24aa24F=12(a+2aa24)(a+aa242)12(a+2a+a24)(a+a+a242)lna+a24aa24

Leave a Reply

Your email address will not be published. Required fields are marked *