Menu Close

Question-10455




Question Number 10455 by amir last updated on 10/Feb/17
Commented by mrW1 last updated on 10/Feb/17
circle C1 with radius r_1  and centre  point M_1 (r_1 ,h_1 )with h_1 =r_1  has two  possibilities:  r_1 = { ((2−(√2))),((2+(√2))) :}    circle C2 with radius r_2  and centre  point M_2 (r_2 ,h_2 )  (h_2 −h_1 )^2 +(r_1 −r_2 )^2 =(r_1 +r_2 )^2   ⇒h_2 =h_1 +2(√(r_1 r_2 ))=r_1 +2(√(r_1 r_2 ))    equation of circle C2 is  (x−r_2 )^2 +(y−h_2 )^2 =r_2 ^2   (x−r_2 )^2 +(y−r_1 −2(√(r_1 r_2 )))^2 =r_2 ^2   it tangents the curve xy=1  (x−r_2 )^2 +((1/x)−r_1 −2(√(r_1 r_2 )))^2 =r_2 ^2      ...(i)    way 1:  solve x in terms of r_2  (I know this is not easy)  since there is only one solution for x (tangent!)  ⇒solution for r_2   ⇒determine h_2     way 2:  solve r_2  in terms of x (I know this is not easy)  since r_2  must be minimum (tangent!)  ⇒(dr_2 /dx)=0  ⇒solve x  ⇒determine r_2   ⇒determine h_2     with r_2  and h_2  you can determine   r_3  and h_3  for circle C3 in similary way...  etc...    I don′t think there exists a general  formula for circle C_n  (n=2,3,...20,...)
$${circle}\:{C}\mathrm{1}\:{with}\:{radius}\:{r}_{\mathrm{1}} \:{and}\:{centre} \\ $$$${point}\:{M}_{\mathrm{1}} \left({r}_{\mathrm{1}} ,{h}_{\mathrm{1}} \right){with}\:{h}_{\mathrm{1}} ={r}_{\mathrm{1}} \:{has}\:{two} \\ $$$${possibilities}: \\ $$$${r}_{\mathrm{1}} =\begin{cases}{\mathrm{2}−\sqrt{\mathrm{2}}}\\{\mathrm{2}+\sqrt{\mathrm{2}}}\end{cases} \\ $$$$ \\ $$$${circle}\:{C}\mathrm{2}\:{with}\:{radius}\:{r}_{\mathrm{2}} \:{and}\:{centre} \\ $$$${point}\:{M}_{\mathrm{2}} \left({r}_{\mathrm{2}} ,{h}_{\mathrm{2}} \right) \\ $$$$\left({h}_{\mathrm{2}} −{h}_{\mathrm{1}} \right)^{\mathrm{2}} +\left({r}_{\mathrm{1}} −{r}_{\mathrm{2}} \right)^{\mathrm{2}} =\left({r}_{\mathrm{1}} +{r}_{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$\Rightarrow{h}_{\mathrm{2}} ={h}_{\mathrm{1}} +\mathrm{2}\sqrt{{r}_{\mathrm{1}} {r}_{\mathrm{2}} }={r}_{\mathrm{1}} +\mathrm{2}\sqrt{{r}_{\mathrm{1}} {r}_{\mathrm{2}} } \\ $$$$ \\ $$$${equation}\:{of}\:{circle}\:{C}\mathrm{2}\:{is} \\ $$$$\left({x}−{r}_{\mathrm{2}} \right)^{\mathrm{2}} +\left({y}−{h}_{\mathrm{2}} \right)^{\mathrm{2}} ={r}_{\mathrm{2}} ^{\mathrm{2}} \\ $$$$\left({x}−{r}_{\mathrm{2}} \right)^{\mathrm{2}} +\left({y}−{r}_{\mathrm{1}} −\mathrm{2}\sqrt{{r}_{\mathrm{1}} {r}_{\mathrm{2}} }\right)^{\mathrm{2}} ={r}_{\mathrm{2}} ^{\mathrm{2}} \\ $$$${it}\:{tangents}\:{the}\:{curve}\:{xy}=\mathrm{1} \\ $$$$\left({x}−{r}_{\mathrm{2}} \right)^{\mathrm{2}} +\left(\frac{\mathrm{1}}{{x}}−{r}_{\mathrm{1}} −\mathrm{2}\sqrt{{r}_{\mathrm{1}} {r}_{\mathrm{2}} }\right)^{\mathrm{2}} ={r}_{\mathrm{2}} ^{\mathrm{2}} \:\:\:\:\:…\left({i}\right) \\ $$$$ \\ $$$${way}\:\mathrm{1}: \\ $$$${solve}\:{x}\:{in}\:{terms}\:{of}\:{r}_{\mathrm{2}} \:\left({I}\:{know}\:{this}\:{is}\:{not}\:{easy}\right) \\ $$$${since}\:{there}\:{is}\:{only}\:{one}\:{solution}\:{for}\:{x}\:\left({tangent}!\right) \\ $$$$\Rightarrow{solution}\:{for}\:{r}_{\mathrm{2}} \\ $$$$\Rightarrow{determine}\:{h}_{\mathrm{2}} \\ $$$$ \\ $$$${way}\:\mathrm{2}: \\ $$$${solve}\:{r}_{\mathrm{2}} \:{in}\:{terms}\:{of}\:{x}\:\left({I}\:{know}\:{this}\:{is}\:{not}\:{easy}\right) \\ $$$${since}\:{r}_{\mathrm{2}} \:{must}\:{be}\:{minimum}\:\left({tangent}!\right) \\ $$$$\Rightarrow\frac{{dr}_{\mathrm{2}} }{{dx}}=\mathrm{0} \\ $$$$\Rightarrow{solve}\:{x} \\ $$$$\Rightarrow{determine}\:{r}_{\mathrm{2}} \\ $$$$\Rightarrow{determine}\:{h}_{\mathrm{2}} \\ $$$$ \\ $$$${with}\:{r}_{\mathrm{2}} \:{and}\:{h}_{\mathrm{2}} \:{you}\:{can}\:{determine}\: \\ $$$${r}_{\mathrm{3}} \:{and}\:{h}_{\mathrm{3}} \:{for}\:{circle}\:{C}\mathrm{3}\:{in}\:{similary}\:{way}… \\ $$$${etc}… \\ $$$$ \\ $$$${I}\:{don}'{t}\:{think}\:{there}\:{exists}\:{a}\:{general} \\ $$$${formula}\:{for}\:{circle}\:{C}_{{n}} \:\left({n}=\mathrm{2},\mathrm{3},…\mathrm{20},…\right) \\ $$
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 13/Feb/17
hello dear mrW1.please draw a   diagram in large scale and post it   here.i will solve this quiestion.   tnx4all.
$${hello}\:{dear}\:{mrW}\mathrm{1}.{please}\:{draw}\:{a}\: \\ $$$${diagram}\:{in}\:{large}\:{scale}\:{and}\:{post}\:{it}\: \\ $$$${here}.{i}\:{will}\:{solve}\:{this}\:{quiestion}.\: \\ $$$${tnx}\mathrm{4}{all}. \\ $$
Commented by mrW1 last updated on 14/Feb/17
Commented by mrW1 last updated on 14/Feb/17
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 16/Mar/17
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 16/Mar/17
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 16/Mar/17
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 16/Mar/17
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 16/Mar/17
Commented by mrW1 last updated on 16/Mar/17
I can′t see how it is considered that  the circles C_2  and so on tangent the  cirve xy=1.
$${I}\:{can}'{t}\:{see}\:{how}\:{it}\:{is}\:{considered}\:{that} \\ $$$${the}\:{circles}\:{C}_{\mathrm{2}} \:{and}\:{so}\:{on}\:{tangent}\:{the} \\ $$$${cirve}\:{xy}=\mathrm{1}. \\ $$
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 16/Mar/17
it is applay to find r_1 .
$${it}\:{is}\:{applay}\:{to}\:{find}\:{r}_{\mathrm{1}} . \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *