Menu Close

Question-10566




Question Number 10566 by krist last updated on 18/Feb/17
Answered by ridwan balatif last updated on 18/Feb/17
∫((cosx)/(1−cos^2 x))dx  =∫((cosx)/(sin^2 x))dx  =∫((cosx)/(sinx))×(1/(sinx))dx  =∫cotanx×cosecxdx  =−cosecx+C
$$\int\frac{\mathrm{cos}{x}}{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} {x}}{dx} \\ $$$$=\int\frac{\mathrm{cos}{x}}{\mathrm{sin}^{\mathrm{2}} {x}}{dx} \\ $$$$=\int\frac{\mathrm{cos}{x}}{\mathrm{sin}{x}}×\frac{\mathrm{1}}{\mathrm{sin}{x}}{dx} \\ $$$$=\int\mathrm{cotan}{x}×\mathrm{cosec}{xdx} \\ $$$$=−\mathrm{cosec}{x}+\mathrm{C} \\ $$
Answered by mrW1 last updated on 18/Feb/17
∫((cos x)/(1−cos^2  x))dx  =∫((cos x)/(sin^2  x))dx  =∫(1/(sin^2  x))d(sin x)  =−(1/(sin x))+C  =−cosec x+C
$$\int\frac{\mathrm{cos}\:{x}}{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:{x}}{dx} \\ $$$$=\int\frac{\mathrm{cos}\:{x}}{\mathrm{sin}^{\mathrm{2}} \:{x}}{dx} \\ $$$$=\int\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \:{x}}{d}\left(\mathrm{sin}\:{x}\right) \\ $$$$=−\frac{\mathrm{1}}{\mathrm{sin}\:{x}}+{C} \\ $$$$=−\mathrm{cosec}\:{x}+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *