Menu Close

Question-10621




Question Number 10621 by ketto last updated on 20/Feb/17
Answered by mrW1 last updated on 20/Feb/17
x boys and y girls  x−y=10     (i)  x=2(y+1) or  x−2y=2     (ii)     ((1,(−1)),(1,(−2)) ) ((x),(y) )= (((10)),(2) )  A= ((1,(−1)),(1,(−2)) )  ∣A∣= determinant ((1,(−1)),(1,(−2)))=−2+1=−1  A^(−1) =(1/(−1)) (((−2),1),((−1),1) )= ((2,(−1)),(1,(−1)) )     ((x),(y) )=A^(−1)  (((10)),(2) )= ((2,(−1)),(1,(−1)) ) (((10)),(2) )= (((18)),(8) )    ⇒18 boys and 8 girls
$${x}\:{boys}\:{and}\:{y}\:{girls} \\ $$$${x}−{y}=\mathrm{10}\:\:\:\:\:\left({i}\right) \\ $$$${x}=\mathrm{2}\left({y}+\mathrm{1}\right)\:{or} \\ $$$${x}−\mathrm{2}{y}=\mathrm{2}\:\:\:\:\:\left({ii}\right) \\ $$$$ \\ $$$$\begin{pmatrix}{\mathrm{1}}&{−\mathrm{1}}\\{\mathrm{1}}&{−\mathrm{2}}\end{pmatrix}\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}=\begin{pmatrix}{\mathrm{10}}\\{\mathrm{2}}\end{pmatrix} \\ $$$${A}=\begin{pmatrix}{\mathrm{1}}&{−\mathrm{1}}\\{\mathrm{1}}&{−\mathrm{2}}\end{pmatrix} \\ $$$$\mid{A}\mid=\begin{vmatrix}{\mathrm{1}}&{−\mathrm{1}}\\{\mathrm{1}}&{−\mathrm{2}}\end{vmatrix}=−\mathrm{2}+\mathrm{1}=−\mathrm{1} \\ $$$${A}^{−\mathrm{1}} =\frac{\mathrm{1}}{−\mathrm{1}}\begin{pmatrix}{−\mathrm{2}}&{\mathrm{1}}\\{−\mathrm{1}}&{\mathrm{1}}\end{pmatrix}=\begin{pmatrix}{\mathrm{2}}&{−\mathrm{1}}\\{\mathrm{1}}&{−\mathrm{1}}\end{pmatrix} \\ $$$$ \\ $$$$\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}={A}^{−\mathrm{1}} \begin{pmatrix}{\mathrm{10}}\\{\mathrm{2}}\end{pmatrix}=\begin{pmatrix}{\mathrm{2}}&{−\mathrm{1}}\\{\mathrm{1}}&{−\mathrm{1}}\end{pmatrix}\begin{pmatrix}{\mathrm{10}}\\{\mathrm{2}}\end{pmatrix}=\begin{pmatrix}{\mathrm{18}}\\{\mathrm{8}}\end{pmatrix} \\ $$$$ \\ $$$$\Rightarrow\mathrm{18}\:{boys}\:{and}\:\mathrm{8}\:{girls} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *