Menu Close

Question-10694




Question Number 10694 by ABD last updated on 23/Feb/17
Answered by mrW1 last updated on 23/Feb/17
f(3x^4 +x^3 )=6x^4 +2x^3 −3=2(3x^4 +x^3 )−3  ⇒f(x)=2x−3  y=2x−3  x=((y+3)/2)  ⇒f^(−1) (x)=((x+3)/2)    g^(−1) (x)=((x+2)/3)  y=((x+2)/3)  x=3y−2  ⇒g(x)=3x−2    g(f^(−1) (x))=3×(((x+3)/2))−2=((3x+5)/2)  f^(−1) (g^(−1) (x))=((((x+2)/3)+3)/2)=((x+11)/6)
$${f}\left(\mathrm{3}{x}^{\mathrm{4}} +{x}^{\mathrm{3}} \right)=\mathrm{6}{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{3}} −\mathrm{3}=\mathrm{2}\left(\mathrm{3}{x}^{\mathrm{4}} +{x}^{\mathrm{3}} \right)−\mathrm{3} \\ $$$$\Rightarrow{f}\left({x}\right)=\mathrm{2}{x}−\mathrm{3} \\ $$$${y}=\mathrm{2}{x}−\mathrm{3} \\ $$$${x}=\frac{{y}+\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow{f}^{−\mathrm{1}} \left({x}\right)=\frac{{x}+\mathrm{3}}{\mathrm{2}} \\ $$$$ \\ $$$${g}^{−\mathrm{1}} \left({x}\right)=\frac{{x}+\mathrm{2}}{\mathrm{3}} \\ $$$${y}=\frac{{x}+\mathrm{2}}{\mathrm{3}} \\ $$$${x}=\mathrm{3}{y}−\mathrm{2} \\ $$$$\Rightarrow{g}\left({x}\right)=\mathrm{3}{x}−\mathrm{2} \\ $$$$ \\ $$$${g}\left({f}^{−\mathrm{1}} \left({x}\right)\right)=\mathrm{3}×\left(\frac{{x}+\mathrm{3}}{\mathrm{2}}\right)−\mathrm{2}=\frac{\mathrm{3}{x}+\mathrm{5}}{\mathrm{2}} \\ $$$${f}^{−\mathrm{1}} \left({g}^{−\mathrm{1}} \left({x}\right)\right)=\frac{\frac{{x}+\mathrm{2}}{\mathrm{3}}+\mathrm{3}}{\mathrm{2}}=\frac{{x}+\mathrm{11}}{\mathrm{6}} \\ $$
Commented by ABD last updated on 23/Feb/17
Commented by mrW1 last updated on 23/Feb/17
thank you!
$${thank}\:{you}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *