Question-11019 Tinku Tara June 3, 2023 None 0 Comments FacebookTweetPin Question Number 11019 by ridwan balatif last updated on 07/Mar/17 Answered by bahmanfeshki last updated on 07/Mar/17 I=∫2nxe−2x+4dx=−12([xe−2x+4]2n−∫2ne−2x+4dx) Answered by geovane10math last updated on 07/Mar/17 ∫2nx⋅e−2x+Adx=F(n)−F(2)∫x⋅e−2x+Adx=∫x⋅e−2x⋅eAdx==eA∫x⋅e−2xdx−2x=u⇒dudx=−2⇒dx=−du2eA∫−u2⋅eudu=eA⋅12⋅∫u⋅eudu==eA2∫u⋅eudu∫u⋅euduu=s,eudu=dt∫sdt=st−∫tds∫u⋅eudu=u(eu+c1)−∫[eu+c1]du∫u⋅eudu=ueu+c1u−(eu+c1u+C)∫ueudu=ueu+c1u−eu−c1u−C∫ueudu=eu(u−1)−CeA2[eu(u−1)−C]=eA2[e−2x(−2x−1−C)]∫x⋅e−2x+Adx=−eA2[e−2x(2x+1+C)]F(n)−F(2)==−eA2[e−2n(2n+1+C)]−(−eA2[(5+C)])=−eA2[e−2n(2n+1+C)]+eA2(5+C) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-76555Next Next post: Question-11020 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.