Menu Close

Question-11019




Question Number 11019 by ridwan balatif last updated on 07/Mar/17
Answered by bahmanfeshki last updated on 07/Mar/17
I=∫_2 ^n xe^(−2x+4)  dx=−(1/2)([xe^(−2x+4) ]_2 ^n −∫_(2  ) ^n e^(−2x+4)  dx)
I=2nxe2x+4dx=12([xe2x+4]2n2ne2x+4dx)
Answered by geovane10math last updated on 07/Mar/17
∫_2 ^n x∙e^(−2x+A)  dx = F(n) − F(2)  ∫x∙e^(−2x+A)  dx = ∫x∙e^(−2x) ∙e^A  dx =   = e^A ∫x∙e^(−2x)  dx   −2x = u ⇒ (du/dx) = −2 ⇒ dx = − (du/2)  e^A ∫− (u/2)∙e^u  du = e^A ∙(1/2)∙∫u∙e^u  du =   = (e^A /2)∫u∙e^u  du  ∫u∙e^u  du            u = s , e^u  du = dt  ∫s dt = st − ∫t ds  ∫u∙e^u  du = u(e^u  + c_1 ) − ∫[e^u  + c_1 ]du  ∫u∙e^u  du = ue^u  + c_1 u − (e^u  + c_1 u + C)  ∫ue^u  du = ue^u  + c_1 u − e^u  − c_1 u − C  ∫ue^u  du = e^u (u − 1) − C  (e^A /2)[e^u (u − 1) − C] = (e^A /2)[e^(−2x) (−2x − 1 − C)]  ∫x∙e^(−2x+A)  dx = − (e^A /2)[e^(−2x) (2x +1 + C)]  F(n) − F(2) =   = − (e^A /2)[e^(−2n) (2n + 1 + C)] − (− (e^A /2)[(5 + C)])   = − (e^A /2)[e^(−2n) ( 2n + 1 + C)] + (e^A /2)(5 + C)
2nxe2x+Adx=F(n)F(2)xe2x+Adx=xe2xeAdx==eAxe2xdx2x=ududx=2dx=du2eAu2eudu=eA12ueudu==eA2ueuduueuduu=s,eudu=dtsdt=sttdsueudu=u(eu+c1)[eu+c1]duueudu=ueu+c1u(eu+c1u+C)ueudu=ueu+c1ueuc1uCueudu=eu(u1)CeA2[eu(u1)C]=eA2[e2x(2x1C)]xe2x+Adx=eA2[e2x(2x+1+C)]F(n)F(2)==eA2[e2n(2n+1+C)](eA2[(5+C)])=eA2[e2n(2n+1+C)]+eA2(5+C)

Leave a Reply

Your email address will not be published. Required fields are marked *