Question Number 11166 by chux last updated on 14/Mar/17
Commented by ridwan balatif last updated on 15/Mar/17
$$\mathrm{cos4}\theta=\mathrm{cos}\left(\mathrm{2}\theta+\mathrm{2}\theta\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2cos}^{\mathrm{2}} \mathrm{2}\theta−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\left\{\mathrm{cos}\left(\theta+\theta\right)\right\}^{\mathrm{2}} −\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\left\{\mathrm{2cos}^{\mathrm{2}} \theta−\mathrm{1}\right\}^{\mathrm{2}} −\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\left(\mathrm{4cos}^{\mathrm{4}} \theta−\mathrm{4cos}^{\mathrm{2}} \theta+\mathrm{1}\right)−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{8cos}^{\mathrm{4}} \theta−\mathrm{8cos}^{\mathrm{2}} \theta+\mathrm{1} \\ $$$$\mathrm{or}\:\mathrm{another}\:\mathrm{way} \\ $$$$\mathrm{cos}\theta=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{z}+\frac{\mathrm{1}}{\mathrm{z}}\right) \\ $$$$\mathrm{cos}\left(\mathrm{n}\theta\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{z}^{\mathrm{n}} +\frac{\mathrm{1}}{\mathrm{z}^{\mathrm{n}} }\right) \\ $$$$\mathrm{cos4}\theta=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{z}^{\mathrm{4}} +\frac{\mathrm{1}}{\mathrm{z}^{\mathrm{4}} }\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left\{\left(\mathrm{z}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{z}^{\mathrm{2}} }\right)^{\mathrm{2}} −\mathrm{2}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left\{\left(\left(\mathrm{z}+\frac{\mathrm{1}}{\mathrm{z}}\right)^{\mathrm{2}} −\mathrm{2}\right)^{\mathrm{2}} −\mathrm{2}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left\{\left(\mathrm{z}+\frac{\mathrm{1}}{\mathrm{z}}\right)^{\mathrm{4}} −\mathrm{4}\left(\mathrm{z}+\frac{\mathrm{1}}{\mathrm{z}}\right)^{\mathrm{2}} +\mathrm{4}−\mathrm{2}\right\}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left\{\mathrm{16cos}^{\mathrm{4}} \theta−\mathrm{16cos}^{\mathrm{2}} \theta+\mathrm{2}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{8cos}^{\mathrm{4}} \theta−\mathrm{8cos}^{\mathrm{2}} \theta+\mathrm{1} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Answered by ajfour last updated on 15/Mar/17
$$\left(\mathrm{cos}\:\theta+{i}\mathrm{sin}\:\theta\right)^{\mathrm{4}} \:=\mathrm{cos}\:^{\mathrm{4}} \theta\:+\mathrm{4}{i}\mathrm{sin}\:\theta\mathrm{cos}^{\mathrm{3}} \theta \\ $$$$\:\:−\mathrm{6sin}\:^{\mathrm{2}} \theta\mathrm{cos}\:^{\mathrm{2}} \theta−\mathrm{4}{i}\mathrm{sin}\:^{\mathrm{3}} \theta\mathrm{cos}\:\theta+\mathrm{sin}\:^{\mathrm{4}} \theta \\ $$$$\mathrm{cos}\:\mathrm{4}\theta=\mathrm{cos}\:^{\mathrm{4}} \theta−\mathrm{6cos}\:^{\mathrm{2}} \theta\left(\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} \theta\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\left(\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} \theta\right)^{\mathrm{2}} \\ $$$$\mathrm{cos}\:\mathrm{4}\theta=\mathrm{8cos}\:^{\mathrm{4}} \theta−\mathrm{8cos}\:^{\mathrm{2}} \theta+\mathrm{1} \\ $$$${if}\:\theta=\frac{\pi}{\mathrm{8}}\:\:,\:\:\:\mathrm{cos}\:\mathrm{4}\theta=\mathrm{cos}\:\left(\pi/\mathrm{2}\right)=\mathrm{0}. \\ $$$${let}\:\mathrm{cos}\:\left(\pi/\mathrm{8}\right)={x} \\ $$$${then}\:\:\mathrm{8}{x}^{\mathrm{4}} −\mathrm{8}{x}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\:\:{x}^{\mathrm{2}} =\frac{\mathrm{8}+\sqrt{\mathrm{64}−\mathrm{32}}}{\mathrm{16}}=\frac{\mathrm{2}+\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$$$\Rightarrow\:{x}\:=\:\mathrm{cos}\left(\pi/\mathrm{8}\right)\:=\left(\frac{\mathrm{2}+\sqrt{\mathrm{2}}}{\mathrm{4}}\:\right)^{\mathrm{1}/\mathrm{2}} \:\:\:. \\ $$
Commented by chux last updated on 15/Mar/17
$$\mathrm{thanks}\:\mathrm{alot}……\:\mathrm{it}\:\mathrm{really}\:\mathrm{helps}. \\ $$