Menu Close

Question-11206




Question Number 11206 by uni last updated on 16/Mar/17
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 16/Mar/17
AD.AC=6×24=144  AD^2 +AC^2 =24^2 =576  (AD+AC)^2 =576+2×144=6×144⇒  AD+AC=12(√6)  t^2 −12(√6)t+144=0⇒  t=((12(√6)±(√(6×144−4×144)))/2)=((12(√6)±12(√2))/2)  t_1 =AC=6((√6)+(√2)),t_2 =AD=6((√6)−(√2))  sin C=((AD)/(24))⇒sin C=((6((√6)−(√2)))/(24))⇒C=15^°   ∡CDA=75^° ⇒((BD)/(sin15^° ))=(x/(sin(180−75)))  BD=x((sin15)/(sin75))=x.tg15  x.AC.sin(90+15)=(BD+24).6⇒  x.6((√6)+(√2))cos15=(xtg15+24)×6  x((√6)+(√2))((((√6)+(√2))/4))=x(2−(√3))+24⇒  x(2+(√3)−2+(√3))=24⇒x=((24)/(2(√3)))=4(√3) ■  t_1 =AC=6((√6)−(√2)),t_2 =AD=6((√6)+(√2))  ⇒∡C=75,∡CDA=15  ((BD)/(sin75))=(x/(sin(180−15)))⇒BD=xcotg15  x.AC.sin(90+15)=(BD+24)×6⇒  x.6((√6)−(√2)).cos15=(x.cotg15+24)×6  x((√6)−(√2))((((√6)+(√2))/4))=x(2+(√3))+24  x(1)=x(2+(√3))+24.......impossible.
AD.AC=6×24=144AD2+AC2=242=576(AD+AC)2=576+2×144=6×144AD+AC=126t2126t+144=0t=126±6×1444×1442=126±1222t1=AC=6(6+2),t2=AD=6(62)sinC=AD24sinC=6(62)24C=15°CDA=75°BDsin15°=xsin(18075)BD=xsin15sin75=x.tg15x.AC.sin(90+15)=(BD+24).6x.6(6+2)cos15=(xtg15+24)×6x(6+2)(6+24)=x(23)+24x(2+32+3)=24x=2423=43◼t1=AC=6(62),t2=AD=6(6+2)C=75,CDA=15BDsin75=xsin(18015)BD=xcotg15x.AC.sin(90+15)=(BD+24)×6x.6(62).cos15=(x.cotg15+24)×6x(62)(6+24)=x(2+3)+24x(1)=x(2+3)+24.impossible.
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 17/Mar/17
DH.CH=6^2 =36,DH+CH=24  CH=((24±(√(24×24−4×36)))/2)=12±6(√3)  tgC=((12±6(√3))/6)=2±(√3)⇒∡C=15 ,75  ⇒∡C=15,75⇒∡DAH=15,75(impossible)  ⇒∡BAH=30,BH=(1/2)AB=(1/2)x  BH=(1/2)x⇒x^2 =((1/2)x)^2 +6^2 ⇒  (3/4)x^2 =36⇒x^2 =48⇒x=4(√3)   ■
DH.CH=62=36,DH+CH=24CH=24±24×244×362=12±63tgC=12±636=2±3C=15,75C=15,75DAH=15,75(impossible)BAH=30,BH=12AB=12xBH=12xx2=(12x)2+6234x2=36x2=48x=43◼
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 17/Mar/17
x.AC.sin(90+15)=6×(BD+24)..(i)  ((BD)/(sin15))=(x/(sin(BDA)))=(x/(sin(90+C)))=(x/(cosC))  AD=24sinC,AC=24cosC  AC.AD=6×24⇒24cosC.24sinC=6×24  sin2C=(1/2)⇒2C=30⇒∡C=15  ((BD)/(sin15))=(x/(cos15))⇒BD=xtg15  (i)⇒x.24cos15.cos15=6.(xtg15+24)  4x.cos^2 15=xtg15+24  x(4×((((√6)+(√2))/4))^2 −(2−(√3)))=24⇒  x(2+(√3)−2+(√3))=24⇒x=((24)/(2(√3)))=4(√3) ■
x.AC.sin(90+15)=6×(BD+24)..(i)BDsin15=xsin(BDA)=xsin(90+C)=xcosCAD=24sinC,AC=24cosCAC.AD=6×2424cosC.24sinC=6×24sin2C=122C=30C=15BDsin15=xcos15BD=xtg15(i)x.24cos15.cos15=6.(xtg15+24)4x.cos215=xtg15+24x(4×(6+24)2(23))=24x(2+32+3)=24x=2423=43◼

Leave a Reply

Your email address will not be published. Required fields are marked *