Menu Close

Question-11341




Question Number 11341 by Nadium last updated on 21/Mar/17
Commented by FilupS last updated on 22/Mar/17
Ω=lim_(n→∞) (1/n^4 )Σ_(i=1) ^n (Σ_(j=1) ^n (i^2 +j^2 )∣i^2 −j^2 ∣)     i^2 −j^2 =(i+j)(i−j)  ∴Σ_(j=1) ^n (i^2 +j^2 )∣i^2 −j^2 ∣=Σ_(j=1) ^n (i^2 +j^2 )∣(i+j)(i−j)∣  i, j >0  ∴=Σ_(j=1) ^n (i^2 +j^2 )(i+j)∣i−j∣  S=(i^2 +1)(i+1)∣i−1∣+(i^2 +2)(i+2)∣i−2∣+...       ...+(i^2 +n)(i+n)∣i−n∣     Ω=lim_(n→∞) (1/n^4 )Σ_(i=1) ^n (Σ_(j=1) ^n (i^2 +j^2 )∣i^2 −j^2 ∣)  Ω=lim_(n→∞) (1/n^4 )Σ_(i=1) ^n (S)  Σ_(i=1) ^n (S)=(1^2 +1)(1+1)∣1−1∣+(1^2 +2)(1+2)∣1−2∣+...          ...+(2^2 +1)(2+1)∣2−1∣+(2^2 +2)(2+2)∣2−2∣+...          ...+(3^2 +1)(3+1)∣3−1∣+(3^2 +2)(3+2)∣3−2∣+...  .........              =(2)(2)(0)+(3)(3)(1)+(4)(4)(2)+...           ...+(5)(3)(1)+(6)(4)(0)+(7)(5)(1)+...           ...+(10)(4)(2)+(11)(5)(1)+(12)(6)(0)+...  ...  =?  working
$$\Omega=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\underset{{j}=\mathrm{1}} {\overset{{n}} {\sum}}\left({i}^{\mathrm{2}} +{j}^{\mathrm{2}} \right)\mid{i}^{\mathrm{2}} −{j}^{\mathrm{2}} \mid\right) \\ $$$$\: \\ $$$${i}^{\mathrm{2}} −{j}^{\mathrm{2}} =\left({i}+{j}\right)\left({i}−{j}\right) \\ $$$$\therefore\underset{{j}=\mathrm{1}} {\overset{{n}} {\sum}}\left({i}^{\mathrm{2}} +{j}^{\mathrm{2}} \right)\mid{i}^{\mathrm{2}} −{j}^{\mathrm{2}} \mid=\underset{{j}=\mathrm{1}} {\overset{{n}} {\sum}}\left({i}^{\mathrm{2}} +{j}^{\mathrm{2}} \right)\mid\left({i}+{j}\right)\left({i}−{j}\right)\mid \\ $$$${i},\:{j}\:>\mathrm{0} \\ $$$$\therefore=\underset{{j}=\mathrm{1}} {\overset{{n}} {\sum}}\left({i}^{\mathrm{2}} +{j}^{\mathrm{2}} \right)\left({i}+{j}\right)\mid{i}−{j}\mid \\ $$$${S}=\left({i}^{\mathrm{2}} +\mathrm{1}\right)\left({i}+\mathrm{1}\right)\mid{i}−\mathrm{1}\mid+\left({i}^{\mathrm{2}} +\mathrm{2}\right)\left({i}+\mathrm{2}\right)\mid{i}−\mathrm{2}\mid+… \\ $$$$\:\:\:\:\:…+\left({i}^{\mathrm{2}} +{n}\right)\left({i}+{n}\right)\mid{i}−{n}\mid \\ $$$$\: \\ $$$$\Omega=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\underset{{j}=\mathrm{1}} {\overset{{n}} {\sum}}\left({i}^{\mathrm{2}} +{j}^{\mathrm{2}} \right)\mid{i}^{\mathrm{2}} −{j}^{\mathrm{2}} \mid\right) \\ $$$$\Omega=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left({S}\right) \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left({S}\right)=\left(\mathrm{1}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{1}+\mathrm{1}\right)\mid\mathrm{1}−\mathrm{1}\mid+\left(\mathrm{1}^{\mathrm{2}} +\mathrm{2}\right)\left(\mathrm{1}+\mathrm{2}\right)\mid\mathrm{1}−\mathrm{2}\mid+… \\ $$$$\:\:\:\:\:\:\:\:…+\left(\mathrm{2}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{2}+\mathrm{1}\right)\mid\mathrm{2}−\mathrm{1}\mid+\left(\mathrm{2}^{\mathrm{2}} +\mathrm{2}\right)\left(\mathrm{2}+\mathrm{2}\right)\mid\mathrm{2}−\mathrm{2}\mid+… \\ $$$$\:\:\:\:\:\:\:\:…+\left(\mathrm{3}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{3}+\mathrm{1}\right)\mid\mathrm{3}−\mathrm{1}\mid+\left(\mathrm{3}^{\mathrm{2}} +\mathrm{2}\right)\left(\mathrm{3}+\mathrm{2}\right)\mid\mathrm{3}−\mathrm{2}\mid+… \\ $$$$……… \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\left(\mathrm{2}\right)\left(\mathrm{2}\right)\left(\mathrm{0}\right)+\left(\mathrm{3}\right)\left(\mathrm{3}\right)\left(\mathrm{1}\right)+\left(\mathrm{4}\right)\left(\mathrm{4}\right)\left(\mathrm{2}\right)+… \\ $$$$\:\:\:\:\:\:\:\:\:…+\left(\mathrm{5}\right)\left(\mathrm{3}\right)\left(\mathrm{1}\right)+\left(\mathrm{6}\right)\left(\mathrm{4}\right)\left(\mathrm{0}\right)+\left(\mathrm{7}\right)\left(\mathrm{5}\right)\left(\mathrm{1}\right)+… \\ $$$$\:\:\:\:\:\:\:\:\:…+\left(\mathrm{10}\right)\left(\mathrm{4}\right)\left(\mathrm{2}\right)+\left(\mathrm{11}\right)\left(\mathrm{5}\right)\left(\mathrm{1}\right)+\left(\mathrm{12}\right)\left(\mathrm{6}\right)\left(\mathrm{0}\right)+… \\ $$$$… \\ $$$$=? \\ $$$${working} \\ $$
Commented by nume1114 last updated on 22/Mar/17
    (i^2 +j^2 )∣i^2 −j^2 ∣  =∣i^2 +j^2 ∣∣i^2 −j^2 ∣  [i^2 +j^2  is always +ve]  =∣(i^2 +j^2 )(i^2 −j^2 )∣  [∣a∣∣b∣=∣ab∣]  =∣i^4 −j^4 ∣    if i>j then ∣i^4 −j^4 ∣=i^4 −j^4       i=j           ∣i^4 −j^4 ∣=0      i<j           ∣i^4 −j^4 ∣=j^4 −i^4   so,  Σ_(i=1) ^n (Σ_(j=1) ^n ∣i^4 −j^4 ∣)  = ∣1^4 −1^4 ∣+∣1^4 −2^4 ∣+∣1^4 −3^4 ∣+…+∣1^4 −n^4 ∣   +∣2^4 −1^4 ∣+∣2^4 −2^4 ∣+∣2^4 −3^4 ∣+…+∣2^4 −n^4 ∣   +∣3^4 −1^4 ∣+∣3^4 −2^4 ∣+∣3^4 −3^4 ∣+…+∣3^4 −n^4 ∣   ⋮                                                   ⋱   +∣n^4 −1^4 ∣+∣n^4 −2^4 ∣+∣n^4 −3^4 ∣+…+∣n^4 −n^4 ∣  = (0)+(2^4 −1^4 )+(3^4 −1^4 )+…+(n^4 −1^4 )   +(2^4 −1^4 )+(0)+(3^4 −2^4 )+…+(n^4 −2^4 )   +(3^4 −1^4 )+(3^4 −1^4 )+(0)+…+(n^4 −2^4 )   ⋮                                                   ⋱   +(n^4 −1^4 )+(n^4 −2^4 )+(n^4 −3^4 )+…+(0)  = 2Σ_(n≥i>j≥1) (i^4 −j^4 )  =2Σ_(i=2) ^n (Σ_(j=1) ^(i−1) (i^4 −j^4 ))
$$\:\:\:\:\left({i}^{\mathrm{2}} +{j}^{\mathrm{2}} \right)\mid{i}^{\mathrm{2}} −{j}^{\mathrm{2}} \mid \\ $$$$=\mid{i}^{\mathrm{2}} +{j}^{\mathrm{2}} \mid\mid{i}^{\mathrm{2}} −{j}^{\mathrm{2}} \mid\:\:\left[{i}^{\mathrm{2}} +{j}^{\mathrm{2}} \:\mathrm{is}\:\mathrm{always}\:+\mathrm{ve}\right] \\ $$$$=\mid\left({i}^{\mathrm{2}} +{j}^{\mathrm{2}} \right)\left({i}^{\mathrm{2}} −{j}^{\mathrm{2}} \right)\mid\:\:\left[\mid{a}\mid\mid{b}\mid=\mid{ab}\mid\right] \\ $$$$=\mid{i}^{\mathrm{4}} −{j}^{\mathrm{4}} \mid \\ $$$$ \\ $$$$\mathrm{if}\:{i}>{j}\:\mathrm{then}\:\mid{i}^{\mathrm{4}} −{j}^{\mathrm{4}} \mid={i}^{\mathrm{4}} −{j}^{\mathrm{4}} \\ $$$$\:\:\:\:{i}={j}\:\:\:\:\:\:\:\:\:\:\:\mid{i}^{\mathrm{4}} −{j}^{\mathrm{4}} \mid=\mathrm{0} \\ $$$$\:\:\:\:{i}<{j}\:\:\:\:\:\:\:\:\:\:\:\mid{i}^{\mathrm{4}} −{j}^{\mathrm{4}} \mid={j}^{\mathrm{4}} −{i}^{\mathrm{4}} \\ $$$$\mathrm{so}, \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\underset{{j}=\mathrm{1}} {\overset{{n}} {\sum}}\mid{i}^{\mathrm{4}} −{j}^{\mathrm{4}} \mid\right) \\ $$$$=\:\mid\mathrm{1}^{\mathrm{4}} −\mathrm{1}^{\mathrm{4}} \mid+\mid\mathrm{1}^{\mathrm{4}} −\mathrm{2}^{\mathrm{4}} \mid+\mid\mathrm{1}^{\mathrm{4}} −\mathrm{3}^{\mathrm{4}} \mid+\ldots+\mid\mathrm{1}^{\mathrm{4}} −{n}^{\mathrm{4}} \mid \\ $$$$\:+\mid\mathrm{2}^{\mathrm{4}} −\mathrm{1}^{\mathrm{4}} \mid+\mid\mathrm{2}^{\mathrm{4}} −\mathrm{2}^{\mathrm{4}} \mid+\mid\mathrm{2}^{\mathrm{4}} −\mathrm{3}^{\mathrm{4}} \mid+\ldots+\mid\mathrm{2}^{\mathrm{4}} −{n}^{\mathrm{4}} \mid \\ $$$$\:+\mid\mathrm{3}^{\mathrm{4}} −\mathrm{1}^{\mathrm{4}} \mid+\mid\mathrm{3}^{\mathrm{4}} −\mathrm{2}^{\mathrm{4}} \mid+\mid\mathrm{3}^{\mathrm{4}} −\mathrm{3}^{\mathrm{4}} \mid+\ldots+\mid\mathrm{3}^{\mathrm{4}} −{n}^{\mathrm{4}} \mid \\ $$$$\:\vdots\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\ddots \\ $$$$\:+\mid{n}^{\mathrm{4}} −\mathrm{1}^{\mathrm{4}} \mid+\mid{n}^{\mathrm{4}} −\mathrm{2}^{\mathrm{4}} \mid+\mid{n}^{\mathrm{4}} −\mathrm{3}^{\mathrm{4}} \mid+\ldots+\mid{n}^{\mathrm{4}} −{n}^{\mathrm{4}} \mid \\ $$$$=\:\left(\mathrm{0}\right)+\left(\mathrm{2}^{\mathrm{4}} −\mathrm{1}^{\mathrm{4}} \right)+\left(\mathrm{3}^{\mathrm{4}} −\mathrm{1}^{\mathrm{4}} \right)+\ldots+\left({n}^{\mathrm{4}} −\mathrm{1}^{\mathrm{4}} \right) \\ $$$$\:+\left(\mathrm{2}^{\mathrm{4}} −\mathrm{1}^{\mathrm{4}} \right)+\left(\mathrm{0}\right)+\left(\mathrm{3}^{\mathrm{4}} −\mathrm{2}^{\mathrm{4}} \right)+\ldots+\left({n}^{\mathrm{4}} −\mathrm{2}^{\mathrm{4}} \right) \\ $$$$\:+\left(\mathrm{3}^{\mathrm{4}} −\mathrm{1}^{\mathrm{4}} \right)+\left(\mathrm{3}^{\mathrm{4}} −\mathrm{1}^{\mathrm{4}} \right)+\left(\mathrm{0}\right)+\ldots+\left({n}^{\mathrm{4}} −\mathrm{2}^{\mathrm{4}} \right) \\ $$$$\:\vdots\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\ddots \\ $$$$\:+\left({n}^{\mathrm{4}} −\mathrm{1}^{\mathrm{4}} \right)+\left({n}^{\mathrm{4}} −\mathrm{2}^{\mathrm{4}} \right)+\left({n}^{\mathrm{4}} −\mathrm{3}^{\mathrm{4}} \right)+\ldots+\left(\mathrm{0}\right) \\ $$$$=\:\mathrm{2}\underset{{n}\geqslant{i}>{j}\geqslant\mathrm{1}} {\sum}\left({i}^{\mathrm{4}} −{j}^{\mathrm{4}} \right) \\ $$$$=\mathrm{2}\underset{{i}=\mathrm{2}} {\overset{{n}} {\sum}}\left(\underset{{j}=\mathrm{1}} {\overset{{i}−\mathrm{1}} {\sum}}\left({i}^{\mathrm{4}} −{j}^{\mathrm{4}} \right)\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *