Menu Close

Question-11813




Question Number 11813 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 01/Apr/17
Commented by mrW1 last updated on 01/Apr/17
depending on the values of a and b,  there are 5 cases:  1) no solution  2) one solution  3) two solutions  4) three solutions  5) four solutions
dependingonthevaluesofaandb,thereare5cases:1)nosolution2)onesolution3)twosolutions4)threesolutions5)foursolutions
Commented by mrW1 last updated on 01/Apr/17
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 01/Apr/17
thank you very much for your answer.  a and b ,are ∈N
thankyouverymuchforyouranswer.aandb,areN
Answered by sma3l2996 last updated on 01/Apr/17
x=a−y^2   (a−y^2 )^2 +y^2 =b  a^2 +y^4 −2ay^2 +y^2 =b  y^4 −(2a−1)y^2 =b−a^2   y^4 −(((2a−1)×2)/2)y^2 +(((2a−1)/2))^2 =b−a^2 +(((2a−1)/2))^2   (y^2 −((2a−1)/2))^2 =b−a^2 +a^2 −a+(1/4)=((4(b−a)+1)/4)  y^2 =+_− ((√(4(b−a)+1))/2)+((2a−1)/2)  y=+_− (√((+_− (√(4(b−a)+1))+2a−1)/2))  x=a−y^2 =+_− (((√(4(b−a)+1))+2a−1)/2)+a
x=ay2(ay2)2+y2=ba2+y42ay2+y2=by4(2a1)y2=ba2y4(2a1)×22y2+(2a12)2=ba2+(2a12)2(y22a12)2=ba2+a2a+14=4(ba)+14y2=+4(ba)+12+2a12y=++4(ba)+1+2a12x=ay2=+4(ba)+1+2a12+a
Commented by mrW1 last updated on 01/Apr/17
line 2 should be:  (a−y^2 )^2 +y=b
line2shouldbe:(ay2)2+y=b
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 01/Apr/17
thank you for answer.but as mrW1,  pionted:ther is a little mistake in   line #2.
thankyouforanswer.butasmrW1,pionted:therisalittlemistakeinYou can't use 'macro parameter character #' in math mode
Commented by sma3l2996 last updated on 01/Apr/17
yes you alright
yesyoualright

Leave a Reply

Your email address will not be published. Required fields are marked *