Question Number 12291 by 1kanika# last updated on 18/Apr/17
Answered by 433 last updated on 07/May/17
$$\begin{bmatrix}{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{0}}\end{bmatrix}×\begin{bmatrix}{\mathrm{0}}&{−\mathrm{1}}\\{\mathrm{1}}&{\mathrm{0}}\end{bmatrix}=\begin{bmatrix}{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{−\mathrm{1}}\end{bmatrix}={A} \\ $$$$\begin{bmatrix}{\mathrm{0}}&{−\mathrm{1}}\\{\mathrm{1}}&{\mathrm{0}}\end{bmatrix}×\begin{bmatrix}{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{0}}\end{bmatrix}=\begin{bmatrix}{−\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}\end{bmatrix}=−{A} \\ $$$$\begin{bmatrix}{\mathrm{0}}&{−\mathrm{1}}\\{\mathrm{1}}&{\mathrm{0}}\end{bmatrix}×\begin{bmatrix}{\mathrm{0}}&{−\mathrm{1}}\\{\mathrm{1}}&{\mathrm{0}}\end{bmatrix}=\begin{bmatrix}{−\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{−\mathrm{1}}\end{bmatrix}=−{I}_{\mathrm{2}} \\ $$$$\begin{bmatrix}{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{0}}\end{bmatrix}^{\mathrm{2}} ={I}_{\mathrm{2}} \\ $$$${A}^{\mathrm{2}} ={I}_{\mathrm{2}} \\ $$$${G}=\left\{\begin{bmatrix}{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{0}}\end{bmatrix},\begin{bmatrix}{\mathrm{0}}&{−\mathrm{1}}\\{\mathrm{1}}&{\mathrm{0}}\end{bmatrix},{A},−{A},{I},−{I}\right\} \\ $$$${ord}\left({G}\right)=\mathrm{6} \\ $$
Commented by 1kanika# last updated on 02/Jun/17
$$\mathrm{sir}\:\mathrm{it}\:\mathrm{can}\:\mathrm{also}\:\mathrm{solve}\:\mathrm{by}\:\mathrm{taken}\:\mathrm{LCM}\:\mathrm{of} \\ $$$$\mathrm{order}\:\mathrm{of}\:\mathrm{generated}\:\mathrm{matrices}. \\ $$