Menu Close

Question-12684




Question Number 12684 by tawa last updated on 29/Apr/17
Answered by mrW1 last updated on 29/Apr/17
p=(√x)  q=(√y)  u=p+q  v=pq    p^3 +q^3 =183  (p+q)(p^2 +q^2 +2pq−3pq)=183  ⇒u(u^2 −3v)=183    ...(i)    p^2 q+pq^2 =182  (p+q)pq=182  ⇒uv=182     ...(ii)    from (i)⇒  u^3 −3uv=183  u^3 −3×182=183  u^3 =729  ⇒u=9  ⇒v=((182)/9)    p+q=9  pq=((182)/9)  (p−q)^2 =(p+q)^2 −4pq=9^2 −4×((182)/9)=(1/9)  p−q=±(1/3)    ⇒p=((p+q)/2)+((p−q)/2)=(9/2)±(1/6)=((14)/3) or ((13)/3)  ⇒q=((p+q)/2)−((p−q)/2)=(9/2)∓(1/6)=((13)/3) or ((14)/3)    x=p^2 =((196)/9) or ((169)/9)  y=q^2 =((169)/9) or ((196)/9)
$${p}=\sqrt{{x}} \\ $$$${q}=\sqrt{{y}} \\ $$$${u}={p}+{q} \\ $$$${v}={pq} \\ $$$$ \\ $$$${p}^{\mathrm{3}} +{q}^{\mathrm{3}} =\mathrm{183} \\ $$$$\left({p}+{q}\right)\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} +\mathrm{2}{pq}−\mathrm{3}{pq}\right)=\mathrm{183} \\ $$$$\Rightarrow\boldsymbol{{u}}\left(\boldsymbol{{u}}^{\mathrm{2}} −\mathrm{3}\boldsymbol{{v}}\right)=\mathrm{183}\:\:\:\:…\left({i}\right) \\ $$$$ \\ $$$${p}^{\mathrm{2}} {q}+{pq}^{\mathrm{2}} =\mathrm{182} \\ $$$$\left({p}+{q}\right){pq}=\mathrm{182} \\ $$$$\Rightarrow\boldsymbol{{uv}}=\mathrm{182}\:\:\:\:\:…\left({ii}\right) \\ $$$$ \\ $$$${from}\:\left({i}\right)\Rightarrow \\ $$$${u}^{\mathrm{3}} −\mathrm{3}{uv}=\mathrm{183} \\ $$$${u}^{\mathrm{3}} −\mathrm{3}×\mathrm{182}=\mathrm{183} \\ $$$${u}^{\mathrm{3}} =\mathrm{729} \\ $$$$\Rightarrow{u}=\mathrm{9} \\ $$$$\Rightarrow{v}=\frac{\mathrm{182}}{\mathrm{9}} \\ $$$$ \\ $$$${p}+{q}=\mathrm{9} \\ $$$${pq}=\frac{\mathrm{182}}{\mathrm{9}} \\ $$$$\left({p}−{q}\right)^{\mathrm{2}} =\left({p}+{q}\right)^{\mathrm{2}} −\mathrm{4}{pq}=\mathrm{9}^{\mathrm{2}} −\mathrm{4}×\frac{\mathrm{182}}{\mathrm{9}}=\frac{\mathrm{1}}{\mathrm{9}} \\ $$$${p}−{q}=\pm\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$ \\ $$$$\Rightarrow{p}=\frac{{p}+{q}}{\mathrm{2}}+\frac{{p}−{q}}{\mathrm{2}}=\frac{\mathrm{9}}{\mathrm{2}}\pm\frac{\mathrm{1}}{\mathrm{6}}=\frac{\mathrm{14}}{\mathrm{3}}\:{or}\:\frac{\mathrm{13}}{\mathrm{3}} \\ $$$$\Rightarrow{q}=\frac{{p}+{q}}{\mathrm{2}}−\frac{{p}−{q}}{\mathrm{2}}=\frac{\mathrm{9}}{\mathrm{2}}\mp\frac{\mathrm{1}}{\mathrm{6}}=\frac{\mathrm{13}}{\mathrm{3}}\:{or}\:\frac{\mathrm{14}}{\mathrm{3}} \\ $$$$ \\ $$$${x}={p}^{\mathrm{2}} =\frac{\mathrm{196}}{\mathrm{9}}\:{or}\:\frac{\mathrm{169}}{\mathrm{9}} \\ $$$${y}={q}^{\mathrm{2}} =\frac{\mathrm{169}}{\mathrm{9}}\:{or}\:\frac{\mathrm{196}}{\mathrm{9}} \\ $$
Commented by tawa last updated on 29/Apr/17
wow, God bless you sir.
$$\mathrm{wow},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *