Question Number 12928 by tawa last updated on 07/May/17
Answered by sandy_suhendra last updated on 09/May/17
$$\mathrm{cosine}\:\mathrm{rule}\:\mathrm{in}\:\Delta\mathrm{ABC}\:: \\ $$$$\mathrm{x}^{\mathrm{2}} =\mathrm{d}^{\mathrm{2}} +\mathrm{d}^{\mathrm{2}} −\mathrm{2d}.\mathrm{d}.\mathrm{cos}\left(\mathrm{180}−\mathrm{2}\theta\right) \\ $$$$\mathrm{x}^{\mathrm{2}} =\mathrm{2d}^{\mathrm{2}} −\mathrm{2d}^{\mathrm{2}} \left(−\mathrm{cos2}\theta\right)\:\Rightarrow\:\mathrm{use}\:\mathrm{cos2}\theta=\mathrm{2cos}^{\mathrm{2}} \theta−\mathrm{1}\:\:\:\:\: \\ $$$$\mathrm{x}^{\mathrm{2}} =\mathrm{2d}^{\mathrm{2}} −\mathrm{2d}^{\mathrm{2}} \left(−\mathrm{2cos}^{\mathrm{2}} \theta+\mathrm{1}\right) \\ $$$$\mathrm{x}^{\mathrm{2}} =\mathrm{2d}^{\mathrm{2}} +\mathrm{4d}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \theta−\mathrm{2d}^{\mathrm{2}} \\ $$$$\mathrm{x}^{\mathrm{2}} =\mathrm{4d}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \theta \\ $$$$\mathrm{x}=\mathrm{2d}\:\mathrm{cos}\:\theta \\ $$$$ \\ $$$$\mathrm{sine}\:\mathrm{rule}\:\mathrm{in}\:\Delta\mathrm{BCD}\:: \\ $$$$\frac{\mathrm{k}}{\mathrm{sin}\:\theta}\:=\:\frac{\mathrm{x}}{\mathrm{sin}\left[\mathrm{180}−\left(\theta+\beta\right)\right]} \\ $$$$\frac{\mathrm{k}}{\mathrm{sin}\:\theta}\:=\:\frac{\mathrm{2d}\:\mathrm{cos}\:\theta}{\mathrm{sin}\left(\theta+\beta\right)} \\ $$$$\mathrm{k}\:=\:\frac{\mathrm{2d}\:\mathrm{cos}\:\theta\:\mathrm{sin}\:\theta}{\mathrm{sin}\left(\theta+\beta\right)}\:\Rightarrow\:\mathrm{use}\:\mathrm{sin}\:\mathrm{2}\theta=\mathrm{2sin}\theta\mathrm{cos}\theta\:\:\:\:\: \\ $$$$\mathrm{k}\:=\:\frac{\mathrm{2d}\left(\mathrm{0}.\mathrm{5}\:\mathrm{sin}\:\mathrm{2}\theta\right)}{\mathrm{sin}\left(\alpha+\beta\right)} \\ $$$$\mathrm{k}\:=\:\frac{\mathrm{d}\:\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{sin}\left(\alpha+\beta\right)} \\ $$