Menu Close

Question-131644




Question Number 131644 by Ahmed1hamouda last updated on 07/Feb/21
Commented by Ahmed1hamouda last updated on 07/Feb/21
  solve the differential equation
$$ \\ $$$$\mathrm{solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation} \\ $$
Answered by rs4089 last updated on 07/Feb/21
xdy+ydx=((ydx−xdy)/(x^2 +y^2 ))  xdy+ydx=(((ydx−xdy)/y^2 )/(1+(x^2 /y^2 )))  d(xy)=d{tan^(−1) ((x/y))}  integrate both side...  xy=tan^(−1) ((x/y))+C         {c is a constant}
$${xdy}+{ydx}=\frac{{ydx}−{xdy}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$${xdy}+{ydx}=\frac{\frac{{ydx}−{xdy}}{{y}^{\mathrm{2}} }}{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{{y}^{\mathrm{2}} }} \\ $$$${d}\left({xy}\right)={d}\left\{{tan}^{−\mathrm{1}} \left(\frac{{x}}{{y}}\right)\right\} \\ $$$${integrate}\:{both}\:{side}… \\ $$$${xy}={tan}^{−\mathrm{1}} \left(\frac{{x}}{{y}}\right)+{C}\:\:\:\:\:\:\:\:\:\left\{{c}\:{is}\:{a}\:{constant}\right\} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *