Menu Close

Question-131880




Question Number 131880 by Algoritm last updated on 09/Feb/21
Answered by SEKRET last updated on 09/Feb/21
 x=(5/2)
x=52
Commented by Algoritm last updated on 09/Feb/21
prove that
provethat
Commented by Raxreedoroid last updated on 09/Feb/21
4((5/2))^2 −5⌊2.5⌋+8{x}=19  x=⌊x⌋+{x}⇒{x}=x−⌊x⌋  25−10+8(2.5−⌊2.5⌋)=19  15+8(0.5)=19  19=19  ∴ x=19
4(52)252.5+8{x}=19x=x+{x}{x}=xx2510+8(2.52.5)=1915+8(0.5)=1919=19x=19
Answered by mr W last updated on 09/Feb/21
just for easy writing:  let n=⌊x⌋, f={x} with 0≤f<1  x=n+f    assume x>0.   you can assume x<0 similarly, and  you′ll see that it gives no solution.    4(n+f)^2 −5n+8f=19  4(n+1)^2 −5n>4(n+f)^2 −5n=19−8f>11  4(n+1)^2 −5n>11  4n^2 +3n−7>0  n_(1,2) =((−3±11)/8)=−(7/4), 1   n<−(7/4) (rejected) or n>1    ...(I)    4n^2 −5n<4(n+f)^2 −5n=19−8f≤19  4n^2 −5n<19  4n^2 −5n−19<0  n_(1,2) =((5±(√(329)))/8)≈−1.6, 2.9  ⇒−1.6<n<2.9   ...(II)    from (I) and (II):  1<n<2.9  ⇒n=2    4(2+f)^2 −5×2+8f=19  4f^2 +24f−13=0  f=((−24±(√(24^2 +16×13)))/8)=(1/2), −((13)/2) (rejected)  ⇒solution: n=2, f=(1/2)  ⇒x=2+(1/2)=(5/2)
justforeasywriting:letn=x,f={x}with0f<1x=n+fassumex>0.youcanassumex<0similarly,andyoullseethatitgivesnosolution.4(n+f)25n+8f=194(n+1)25n>4(n+f)25n=198f>114(n+1)25n>114n2+3n7>0n1,2=3±118=74,1n<74(rejected)orn>1(I)4n25n<4(n+f)25n=198f194n25n<194n25n19<0n1,2=5±32981.6,2.91.6<n<2.9(II)from(I)and(II):1<n<2.9n=24(2+f)25×2+8f=194f2+24f13=0f=24±242+16×138=12,132(rejected)solution:n=2,f=12x=2+12=52

Leave a Reply

Your email address will not be published. Required fields are marked *