Menu Close

Question-132153




Question Number 132153 by Ñï= last updated on 11/Feb/21
Commented by Ar Brandon last updated on 11/Feb/21
No username ?! ����
Answered by Olaf last updated on 11/Feb/21
S(x) = Σ_(n=0) ^∞ (2n−1)!!(x^n /(n!))  Let f(x) = (1−2x)^(−(1/2))   f′(x) = (1−2x)^(−(3/2))   f′′(x) = 3(1−2x)^(−(5/2))   f^((3)) (x) = 3.5(1−2x)^(−(7/2))   f^((4)) (x) = 3.5.7(1−2x)^(−(9/2))   ...  f^((n)) (x) = 3.5.7...(2n−1)(1−2x)^(−(((2n+1))/2))   f^((n)) (0) = 3.5.7...(2n−1) = Π_(k=1) ^n (2k−1) = (2n−1)!!  f(x) = Σ_(n=0) ^∞ f^((n)) (0)(x^n /(n!)) = S(x)
S(x)=n=0(2n1)!!xnn!Letf(x)=(12x)12f(x)=(12x)32f(x)=3(12x)52f(3)(x)=3.5(12x)72f(4)(x)=3.5.7(12x)92f(n)(x)=3.5.7(2n1)(12x)(2n+1)2f(n)(0)=3.5.7(2n1)=nk=1(2k1)=(2n1)!!f(x)=n=0f(n)(0)xnn!=S(x)

Leave a Reply

Your email address will not be published. Required fields are marked *