Menu Close

Question-132153




Question Number 132153 by Ñï= last updated on 11/Feb/21
Commented by Ar Brandon last updated on 11/Feb/21
No username ?! ����
Answered by Olaf last updated on 11/Feb/21
S(x) = Σ_(n=0) ^∞ (2n−1)!!(x^n /(n!))  Let f(x) = (1−2x)^(−(1/2))   f′(x) = (1−2x)^(−(3/2))   f′′(x) = 3(1−2x)^(−(5/2))   f^((3)) (x) = 3.5(1−2x)^(−(7/2))   f^((4)) (x) = 3.5.7(1−2x)^(−(9/2))   ...  f^((n)) (x) = 3.5.7...(2n−1)(1−2x)^(−(((2n+1))/2))   f^((n)) (0) = 3.5.7...(2n−1) = Π_(k=1) ^n (2k−1) = (2n−1)!!  f(x) = Σ_(n=0) ^∞ f^((n)) (0)(x^n /(n!)) = S(x)
$$\mathrm{S}\left({x}\right)\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\mathrm{2}{n}−\mathrm{1}\right)!!\frac{{x}^{{n}} }{{n}!} \\ $$$$\mathrm{Let}\:{f}\left({x}\right)\:=\:\left(\mathrm{1}−\mathrm{2}{x}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${f}'\left({x}\right)\:=\:\left(\mathrm{1}−\mathrm{2}{x}\right)^{−\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$${f}''\left({x}\right)\:=\:\mathrm{3}\left(\mathrm{1}−\mathrm{2}{x}\right)^{−\frac{\mathrm{5}}{\mathrm{2}}} \\ $$$${f}^{\left(\mathrm{3}\right)} \left({x}\right)\:=\:\mathrm{3}.\mathrm{5}\left(\mathrm{1}−\mathrm{2}{x}\right)^{−\frac{\mathrm{7}}{\mathrm{2}}} \\ $$$${f}^{\left(\mathrm{4}\right)} \left({x}\right)\:=\:\mathrm{3}.\mathrm{5}.\mathrm{7}\left(\mathrm{1}−\mathrm{2}{x}\right)^{−\frac{\mathrm{9}}{\mathrm{2}}} \\ $$$$… \\ $$$${f}^{\left({n}\right)} \left({x}\right)\:=\:\mathrm{3}.\mathrm{5}.\mathrm{7}…\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{1}−\mathrm{2}{x}\right)^{−\frac{\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{2}}} \\ $$$${f}^{\left({n}\right)} \left(\mathrm{0}\right)\:=\:\mathrm{3}.\mathrm{5}.\mathrm{7}…\left(\mathrm{2}{n}−\mathrm{1}\right)\:=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{2}{k}−\mathrm{1}\right)\:=\:\left(\mathrm{2}{n}−\mathrm{1}\right)!! \\ $$$${f}\left({x}\right)\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{f}^{\left({n}\right)} \left(\mathrm{0}\right)\frac{{x}^{{n}} }{{n}!}\:=\:\mathrm{S}\left({x}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *