Question Number 132260 by Salman_Abir last updated on 12/Feb/21
Answered by Olaf last updated on 13/Feb/21
$$\left({x}\sqrt{{x}}\right)^{{x}} \:=\:{x}^{{x}\sqrt{{x}}} \\ $$$$\left({x}^{\mathrm{3}/\mathrm{2}} \right)^{{x}} \:=\:{x}^{{x}^{\mathrm{3}/\mathrm{2}} } \\ $$$${x}\mathrm{ln}{x}^{\mathrm{3}/\mathrm{2}} \:=\:{x}^{\mathrm{3}/\mathrm{2}} \mathrm{ln}{x} \\ $$$${x}\mathrm{ln}{x}^{\mathrm{3}/\mathrm{2}} \:=\:{x}^{\mathrm{3}/\mathrm{2}} \mathrm{ln}{x} \\ $$$$\frac{\mathrm{3}}{\mathrm{2}}{x}\mathrm{ln}{x}\:=\:{x}^{\mathrm{3}/\mathrm{2}} \mathrm{ln}{x} \\ $$$${x}\mathrm{ln}{x}\left[\frac{\mathrm{3}}{\mathrm{2}}−\sqrt{{x}}\right]\:=\:\mathrm{0} \\ $$$$\left(\mathrm{necessarilly}\:{x}\neq\mathrm{0}\right) \\ $$$${x}\:=\:\mathrm{1}\:\mathrm{or}\:{x}\:=\:\frac{\mathrm{9}}{\mathrm{4}} \\ $$
Commented by otchereabdullai@gmail.com last updated on 13/Feb/21
$$\mathrm{nice}\:\mathrm{one}\:\mathrm{sir}! \\ $$