Question Number 132287 by benjo_mathlover last updated on 13/Feb/21
Answered by Olaf last updated on 13/Feb/21
$$\mathrm{Let}\:{q}\:=\:\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{6}} {f}\left({x}\right){dx}\:=\:\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{6}} {f}\left({x}−\mathrm{4}\right){dx}\:\:\:\:\left(\mathrm{1}\right) \\ $$$$\mathrm{Let}\:{u}\:=\:{x}−\mathrm{4} \\ $$$$\left(\mathrm{1}\right)\::\:{q}\:=\:\mathrm{2}\int_{−\mathrm{4}} ^{\mathrm{2}} {f}\left({u}\right){du} \\ $$$${q}\:=\:\mathrm{2}\int_{−\mathrm{4}} ^{−\mathrm{2}} {f}\left({u}\right){du}+\mathrm{2}\int_{−\mathrm{2}} ^{\mathrm{0}} {f}\left({u}\right){du}+\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{2}} {f}\left({u}\right){du} \\ $$$${f}\:\mathrm{is}\:\mathrm{odd}\:: \\ $$$${q}\:=\:−\mathrm{2}\int_{\mathrm{2}} ^{\mathrm{4}} {f}\left({u}\right){du}−\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{2}} {f}\left({u}\right){du}+\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{2}} {f}\left({u}\right){du} \\ $$$${q}\:=\:−\mathrm{2}\int_{\mathrm{2}} ^{\mathrm{4}} {f}\left({u}−\mathrm{4}\right){du} \\ $$$$\mathrm{Let}\:{v}\:=\:{u}−\mathrm{4} \\ $$$${q}\:=\:−\mathrm{2}\int_{−\mathrm{2}} ^{\mathrm{0}} {f}\left({v}\right){dv} \\ $$$${f}\:\mathrm{is}\:\mathrm{odd}\:: \\ $$$${q}\:=\:\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{2}} {f}\left({v}\right){dv} \\ $$$${q}\:=\:\mathrm{2}{p} \\ $$
Commented by Olaf last updated on 13/Feb/21
$${sorry}\:{mister},\:{I}\:{corrected} \\ $$
Commented by benjo_mathlover last updated on 13/Feb/21
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by Ñï= last updated on 14/Feb/21
$$\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{6}} {f}\left({x}\right){dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{6}} {f}\left({x}−\mathrm{4}\right){dx} \\ $$$$=\mathrm{2}\int_{−\mathrm{4}} ^{\mathrm{2}} {f}\left({x}\right){dx} \\ $$$$=\mathrm{2}\left(\int_{−\mathrm{2}} ^{\mathrm{2}} {f}\left({x}\right){dx}+\int_{−\mathrm{4}} ^{−\mathrm{2}} {f}\left({x}\right){dx}\right) \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{2}} {f}\left({x}−\mathrm{4}\right){dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{2}} {f}\left({x}\right){dx} \\ $$$$=\mathrm{2}{p} \\ $$