Menu Close

Question-132292




Question Number 132292 by Algoritm last updated on 13/Feb/21
Answered by mathmax by abdo last updated on 13/Feb/21
(1/([x]))+(1/([2x]))=[x]+(1/3)  let [x]=n ⇒n≤x<n+1 ⇒2n≤2x<2n+2  if 2x∈[2n,2n+1[ ⇒x∈[n,n+(1/2)[ ⇒[2x]=2n  e⇒(1/n)+(1/(2n))=n+(1/3) ⇒(3/(2n))=n+(1/3) ⇒(9/(2n))=3n+1 ⇒9=2n(3n+1) ⇒  6n^2 +2n−9=0  →Δ^′  =1−6.(−9) =1+54=55 ⇒n_1 =((−1+(√(54)))/(12))  not solution  also n_2 =((−1−(√(54)))/(12)) not solution (n integr!)  if 2x∈[2n+1,2n+2[ ⇒x∈[n+(1/2),n+1[   [2x] =2n+1  e⇒(1/n)+(1/(2n+1))=n+(1/3) ⇒((3n+1)/(n(2n+1)))=((3n+1)/3) ⇒  2n^(2 ) +n =3 ⇒2n^2 +n−3=0  Δ=1−4(2)(−3) =1+24=25 ⇒n_1 =((−1+5)/4)=1  and n_2 =((−1−5)/4)=−(3/2)  not solution ⇒n=1 ⇒x∈[(3/2),2[ this is the set of solution
1[x]+1[2x]=[x]+13let[x]=nnx<n+12n2x<2n+2if2x[2n,2n+1[x[n,n+12[[2x]=2ne1n+12n=n+1332n=n+1392n=3n+19=2n(3n+1)6n2+2n9=0Δ=16.(9)=1+54=55n1=1+5412notsolutionalson2=15412notsolution(nintegr!)if2x[2n+1,2n+2[x[n+12,n+1[[2x]=2n+1e1n+12n+1=n+133n+1n(2n+1)=3n+132n2+n=32n2+n3=0Δ=14(2)(3)=1+24=25n1=1+54=1andn2=154=32notsolutionn=1x[32,2[thisisthesetofsolution

Leave a Reply

Your email address will not be published. Required fields are marked *