Question Number 132564 by abony1303 last updated on 15/Feb/21
Answered by abony1303 last updated on 15/Feb/21
$$\mathrm{pls}\:\mathrm{help}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{shaded}\:\mathrm{region} \\ $$
Answered by MJS_new last updated on 15/Feb/21
$$\mathrm{rotate}\:\mathrm{the}\:\mathrm{picture}\:\mathrm{by}\:−\mathrm{45}° \\ $$$$\Rightarrow \\ $$$$\mathrm{big}\:\mathrm{upper}\:\mathrm{half}\:\mathrm{circle} \\ $$$${y}=\sqrt{\mathrm{100}−{x}^{\mathrm{2}} } \\ $$$$\mathrm{small}\:\mathrm{upper}\:\mathrm{half}\:\mathrm{circle} \\ $$$${y}=\mathrm{5}\sqrt{\mathrm{2}}+\sqrt{\mathrm{25}−{x}^{\mathrm{2}} } \\ $$$$\mathrm{they}\:\mathrm{intersect}\:\mathrm{at}\:{x}=\pm\frac{\mathrm{5}\sqrt{\mathrm{14}}}{\mathrm{4}} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{of}\:\mathrm{blue}\:\mathrm{region} \\ $$$$\underset{\mathrm{0}} {\overset{\frac{\mathrm{5}\sqrt{\mathrm{14}}}{\mathrm{4}}} {\int}}\left(\mathrm{5}\sqrt{\mathrm{2}}+\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }−\sqrt{\mathrm{100}−{x}^{\mathrm{2}} }\right){dx}= \\ $$$$=\left[\mathrm{5}\sqrt{\mathrm{2}}{x}+\frac{{x}\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }}{\mathrm{2}}+\frac{\mathrm{25arcsin}\:\frac{{x}}{\mathrm{5}}}{\mathrm{2}}−\frac{{x}\sqrt{\mathrm{100}−{x}^{\mathrm{2}} }}{\mathrm{2}}−\mathrm{50arcsin}\:\frac{{x}}{\mathrm{10}}\right]_{\mathrm{0}} ^{\frac{\mathrm{5}\sqrt{\mathrm{14}}}{\mathrm{4}}} = \\ $$$$=\frac{\mathrm{25}}{\mathrm{4}}\left(\sqrt{\mathrm{7}}+\mathrm{2arcsin}\:\frac{\sqrt{\mathrm{14}}}{\mathrm{4}}\:−\mathrm{8arcsin}\:\frac{\sqrt{\mathrm{14}}}{\mathrm{8}}\right)= \\ $$$$=\frac{\mathrm{25}}{\mathrm{4}}\left(\sqrt{\mathrm{7}}−\mathrm{arctan}\:\frac{\mathrm{1541}\sqrt{\mathrm{7}}}{\mathrm{393}}\right)\approx\mathrm{7}.\mathrm{31906} \\ $$$$\Rightarrow\:\mathrm{blue}\:\mathrm{area}\:=\mathrm{25}\left(\sqrt{\mathrm{7}}−\mathrm{arctan}\:\frac{\mathrm{1541}\sqrt{\mathrm{7}}}{\mathrm{393}}\right)\approx\mathrm{29}.\mathrm{2763} \\ $$
Commented by mr W last updated on 15/Feb/21
$${i}\:{think}\:{this}\:{is}\:{the}\:{best}\:{path}. \\ $$
Answered by mr W last updated on 15/Feb/21
Commented by mr W last updated on 15/Feb/21
$$\mathrm{cos}\:\alpha=\frac{\left(\mathrm{2}{r}\right)^{\mathrm{2}} +\left(\sqrt{\mathrm{2}}{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} }{\mathrm{2}×\mathrm{2}{r}×\sqrt{\mathrm{2}}{r}}=\frac{\mathrm{5}\sqrt{\mathrm{2}}}{\mathrm{8}} \\ $$$$\mathrm{cos}\:\gamma=\frac{\left(\mathrm{2}{r}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} −\left(\sqrt{\mathrm{2}}{r}\right)^{\mathrm{2}} }{\mathrm{2}×\mathrm{2}{r}×{r}}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\beta=\alpha+\gamma \\ $$$${orange}\:{shaded}\:{segment}: \\ $$$${A}_{{Or}} =\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\left(\mathrm{2}\beta−\mathrm{sin}\:\mathrm{2}\beta\right) \\ $$$${green}\:{shaded}\:{segment}: \\ $$$${A}_{{Gr}} =\frac{\left(\mathrm{2}{r}\right)^{\mathrm{2}} }{\mathrm{2}}\left(\mathrm{2}\alpha−\mathrm{sin}\:\mathrm{2}\alpha\right) \\ $$$${blue}\:{shaded}\:{area}: \\ $$$${A}_{{blue}} =\mathrm{2}\left({A}_{{Or}} −{A}_{{Gr}} \right) \\ $$$$=\left[\mathrm{2}\beta−\mathrm{sin}\:\mathrm{2}\beta−\mathrm{8}\alpha+\mathrm{4sin}\:\mathrm{2}\alpha\right]{r}^{\mathrm{2}} \\ $$$$=\left[\mathrm{10}\alpha+\mathrm{2}\gamma−\mathrm{sin}\:\left(\mathrm{2}\alpha+\mathrm{2}\gamma\right)+\mathrm{4sin}\:\mathrm{2}\alpha\right]{r}^{\mathrm{2}} \\ $$$$=\left[\mathrm{10}\alpha+\mathrm{2}\gamma+\mathrm{sin}\:\mathrm{2}\alpha\left(\mathrm{4}−\mathrm{cos}\:\mathrm{2}\gamma\right)−\mathrm{cos}\:\mathrm{2}\alpha\:\mathrm{sin}\:\mathrm{2}\gamma\right]{r}^{\mathrm{2}} \\ $$$$=\mathrm{2}\left[\gamma−\mathrm{3}\alpha+\mathrm{sin}\:\alpha\:\mathrm{cos}\:\alpha\:\left(\mathrm{5}−\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\gamma\right)−\left(\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\alpha−\mathrm{1}\right)\mathrm{sin}\:\gamma\:\mathrm{cos}\:\gamma\right]{r}^{\mathrm{2}} \\ $$$$=\mathrm{2}\left[\gamma−\mathrm{3}\alpha+\frac{\sqrt{\mathrm{14}}}{\mathrm{8}}×\frac{\mathrm{5}\sqrt{\mathrm{2}}}{\mathrm{8}}\left(\mathrm{5}−\mathrm{2}×\frac{\mathrm{3}^{\mathrm{2}} }{\mathrm{4}^{\mathrm{2}} }\right)−\left(\mathrm{2}×\frac{\mathrm{25}×\mathrm{2}}{\mathrm{64}}−\mathrm{1}\right)×\frac{\sqrt{\mathrm{7}}}{\mathrm{4}}×\frac{\mathrm{3}}{\mathrm{4}}\right]{r}^{\mathrm{2}} \\ $$$$=\mathrm{2}\left(\gamma−\mathrm{3}\alpha+\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}\right){r}^{\mathrm{2}} \\ $$$$=\mathrm{2}\left(\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}}−\mathrm{3}\:\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{5}\sqrt{\mathrm{2}}}{\mathrm{8}}+\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}\right){r}^{\mathrm{2}} \\ $$$$\approx\mathrm{1}.\mathrm{171}\:\mathrm{050}\:\mathrm{076}\:{r}^{\mathrm{2}} \approx\mathrm{29}.\mathrm{276}\:\mathrm{252} \\ $$
Commented by Tawa11 last updated on 06/Nov/21
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Answered by mr W last updated on 15/Feb/21
Commented by mr W last updated on 15/Feb/21
$${r}_{\mathrm{1}} ={a}=\mathrm{2}{r}=\mathrm{10} \\ $$$${r}^{\mathrm{2}} ={r}_{\mathrm{2}} ^{\mathrm{2}} +\left(\sqrt{\mathrm{2}}{r}\right)^{\mathrm{2}} −\mathrm{2}{r}_{\mathrm{2}} \sqrt{\mathrm{2}}{r}\:\mathrm{cos}\:\theta \\ $$$${r}_{\mathrm{2}} ^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{2}}\mathrm{cos}\:\theta\:{rr}_{\mathrm{2}} +{r}^{\mathrm{2}} =\mathrm{0} \\ $$$${r}_{\mathrm{2}} ={r}\left(\sqrt{\mathrm{2}}\mathrm{cos}\:\theta+\sqrt{\mathrm{cos}\:\mathrm{2}\theta}\right) \\ $$$${r}\left(\sqrt{\mathrm{2}}\mathrm{cos}\:\alpha+\sqrt{\mathrm{cos}\:\mathrm{2}\alpha}\right)=\mathrm{2}{r} \\ $$$$\sqrt{\mathrm{cos}\:\mathrm{2}\alpha}=\mathrm{2}−\sqrt{\mathrm{2}}\mathrm{cos}\:\alpha \\ $$$$\mathrm{cos}\:\mathrm{2}\alpha=\mathrm{4}−\mathrm{4}\sqrt{\mathrm{2}}\mathrm{cos}\:\alpha+\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\theta \\ $$$$\mathrm{cos}\:\alpha=\frac{\mathrm{5}\sqrt{\mathrm{2}}}{\mathrm{8}} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}{A}_{{blue}} =\int_{\mathrm{0}} ^{\alpha} \frac{\left({r}_{\mathrm{2}} ^{\mathrm{2}} −{r}_{\mathrm{1}} ^{\mathrm{2}} \right){d}\theta}{\mathrm{2}} \\ $$$${A}_{{blue}} =\mathrm{2}\int_{\mathrm{0}} ^{\alpha} \left({r}_{\mathrm{2}} ^{\mathrm{2}} −{r}_{\mathrm{1}} ^{\mathrm{2}} \right){d}\theta \\ $$$$=\mathrm{2}{r}^{\mathrm{2}} \int_{\mathrm{0}} ^{\alpha} \left[\left(\sqrt{\mathrm{2}}\mathrm{cos}\:\theta+\sqrt{\mathrm{cos}\:\mathrm{2}\theta}\right)^{\mathrm{2}} −\mathrm{4}\right]{d}\theta \\ $$$$=\mathrm{2}{r}^{\mathrm{2}} \int_{\mathrm{0}} ^{\alpha} \left(\mathrm{2cos}^{\mathrm{2}} \:\theta+\mathrm{cos}\:\mathrm{2}\theta+\mathrm{2cos}\:\theta\sqrt{\mathrm{2}\:\mathrm{cos}\:\mathrm{2}\theta}−\mathrm{4}\right){d}\theta \\ $$$$=\mathrm{2}{r}^{\mathrm{2}} \int_{\mathrm{0}} ^{\alpha} \left(\mathrm{2}\:\mathrm{cos}\:\mathrm{2}\theta+\mathrm{2cos}\:\theta\sqrt{\mathrm{2}\left(\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} \:\theta\right)}−\mathrm{3}\right){d}\theta \\ $$$$=\mathrm{2}{r}^{\mathrm{2}} \left[\mathrm{sin}\:\mathrm{2}\theta−\mathrm{3}\theta+\mathrm{sin}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}\:\mathrm{sin}\:\theta\right)+\sqrt{\mathrm{2}}\mathrm{sin}\:\theta\sqrt{\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\theta−\mathrm{1}}\right]_{\mathrm{0}} ^{\alpha} \\ $$$$=\mathrm{2}{r}^{\mathrm{2}} \left[\mathrm{sin}\:\mathrm{2}\alpha−\mathrm{3}\alpha+\mathrm{sin}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}\:\mathrm{sin}\:\alpha\right)+\sqrt{\mathrm{2}}\mathrm{sin}\:\alpha\sqrt{\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\alpha−\mathrm{1}}\right] \\ $$$$=\mathrm{2}{r}^{\mathrm{2}} \left[\frac{\mathrm{5}\sqrt{\mathrm{7}}}{\mathrm{16}}−\mathrm{3cos}^{−\mathrm{1}} \frac{\mathrm{5}\sqrt{\mathrm{2}}}{\mathrm{8}}+\mathrm{sin}^{−\mathrm{1}} \frac{\sqrt{\mathrm{7}}}{\mathrm{4}}+\frac{\mathrm{3}\sqrt{\mathrm{7}}}{\mathrm{16}}\right] \\ $$$$=\left[\sqrt{\mathrm{7}}−\mathrm{6cos}^{−\mathrm{1}} \frac{\mathrm{5}\sqrt{\mathrm{2}}}{\mathrm{8}}+\mathrm{2}\:\mathrm{sin}^{−\mathrm{1}} \frac{\sqrt{\mathrm{7}}}{\mathrm{4}}\right]{r}^{\mathrm{2}} \\ $$$$=\mathrm{1}.\mathrm{171}\:\mathrm{050}\:{r}^{\mathrm{2}} =\mathrm{29}.\mathrm{276}\:\mathrm{252} \\ $$