Menu Close

Question-133056




Question Number 133056 by mr W last updated on 19/Feb/21
Commented by mr W last updated on 18/Feb/21
a ball is thrown from point A with  speed u at an angle 𝛉 to horizontal  and strikes at a point on the   inclined plane and returns back to  point A. the restitution coefficient   of the collision is e.  find the speed u in terms of 𝛉 and  determine the minimum speed u_(min)   the ball must have.
aballisthrownfrompointAwithspeeduatanangleθtohorizontalandstrikesatapointontheinclinedplaneandreturnsbacktopointA.therestitutioncoefficientofthecollisionise.findthespeeduintermsofθanddeterminetheminimumspeedumintheballmusthave.
Commented by liberty last updated on 18/Feb/21
Commented by liberty last updated on 18/Feb/21
  exactly the same. hahaha
exactlythesame.hahaha
Commented by mr W last updated on 18/Feb/21
hahaha, if you mean they are exactly  the same, then you seem not to have  read both questions exactly.
hahaha,ifyoumeantheyareexactlythesame,thenyouseemnottohavereadbothquestionsexactly.
Commented by liberty last updated on 18/Feb/21
  yes maybe the question is  different.  the exact same is the   picture
yesmaybethequestionisdifferent.theexactsameisthepicture
Commented by liberty last updated on 18/Feb/21
hahahaha
hahahaha
Answered by mr W last updated on 19/Feb/21
Commented by EDWIN88 last updated on 20/Feb/21
amazing
amazing
Commented by mr W last updated on 20/Feb/21
B(L+s cos α, s sin α)  with s=ξL, ξ≥0    from A to B:  t=((L+s cos α)/(u cos θ))=((L(1+ξ cos α))/(u cos θ))  s sin α=((L(1+ξ cos α))/(u cos θ))[u sin θ−(g/2)×((L(1+ξ cos α))/(u cos θ))]  ξ sin α=(1+ξ cos α)[tan θ−((gL(1+ξ cos α)(1+tan^2  θ))/(2u^2 ))]  let λ=((gL)/(2u^2 ))  ξ sin α=(1+ξ cos α)[tan θ−λ(1+ξ cos α)(1+tan^2  θ)]  λ(1+ξ cos α)tan^2  θ−tan θ+((ξ sin α+λ(1+ξ cos α)^2 )/((1+ξ cos α)))=0  ⇒tan θ=((1±(√(1−4λ[ξ sin α+λ(1+ξ cos α)^2 ])))/(2λ(1+ξ cos α)))    at point B:  (see Q132102 for more detail)  U=coming speed  V=leaving speed    (→) U_x =u cos θ  U_y =−u sin θ+g×((L(1+ξ cos α))/(u cos θ))  (↓) U_y =u[−sin θ+((2λ(1+ξ cos α))/(cos θ))]  let e′=1+e  V_x =(e′ sin^2  α−1)U_x +e′ sin α cos α U_y   (←) V_x =u[−e′ sin α sin (θ−α)−cos θ+((λe′(1+ξ cos α) sin 2α)/(cos θ))]  V_y =e′ sin α cos α U_x +(e′ cos^2  α−1)U_y   (↑) V_y =u[−e′ cos α sin (θ−α)+sin θ+((2λ(e′ cos^2  α−1)(1+ξ cos α))/(cos θ))]    from B to A:  t=((L(1+ξ cos α))/(u[−e′ sin α sin (θ−α)−cos θ+((λe′(1+ξ cos α) sin 2α)/(cos θ))]))  ((tu)/L)=η=((1+ξ cos α)/(−e′ sin α sin (θ−α)−cos θ+((λe′(1+ξ cos α) sin 2α)/(cos θ))))  s sin α=t{−u[−e′ cos α sin (θ−α)+sin θ+((2λ(e′ cos^2  α−1)(1+ξ cos α))/(cos θ))]+(1/2)gt}  ξ sin α=((tu)/L)[e′ cos α sin (θ−α)−sin θ−((2λ(e′ cos^2  α−1)(1+ξ cos α))/(cos θ))+((gL)/(2u^2 ))×((tu)/L)]  ⇒ξ sin α=η[e′ cos α sin (θ−α)−sin θ−((2λ(e′ cos^2  α−1)(1+ξ cos α))/(cos θ))+λη]   ...(I)    for a given λ we can find ξ through (I).
B(L+scosα,ssinα)withs=ξL,ξ0fromAtoB:t=L+scosαucosθ=L(1+ξcosα)ucosθssinα=L(1+ξcosα)ucosθ[usinθg2×L(1+ξcosα)ucosθ]ξsinα=(1+ξcosα)[tanθgL(1+ξcosα)(1+tan2θ)2u2]letλ=gL2u2ξsinα=(1+ξcosα)[tanθλ(1+ξcosα)(1+tan2θ)]λ(1+ξcosα)tan2θtanθ+ξsinα+λ(1+ξcosα)2(1+ξcosα)=0tanθ=1±14λ[ξsinα+λ(1+ξcosα)2]2λ(1+ξcosα)atpointB:(seeQ132102formoredetail)U=comingspeedV=leavingspeed()Ux=ucosθUy=usinθ+g×L(1+ξcosα)ucosθ()Uy=u[sinθ+2λ(1+ξcosα)cosθ]lete=1+eVx=(esin2α1)Ux+esinαcosαUy()Vx=u[esinαsin(θα)cosθ+λe(1+ξcosα)sin2αcosθ]Vy=esinαcosαUx+(ecos2α1)Uy()Vy=u[ecosαsin(θα)+sinθ+2λ(ecos2α1)(1+ξcosα)cosθ]fromBtoA:t=L(1+ξcosα)u[esinαsin(θα)cosθ+λe(1+ξcosα)sin2αcosθ]tuL=η=1+ξcosαesinαsin(θα)cosθ+λe(1+ξcosα)sin2αcosθssinα=t{u[ecosαsin(θα)+sinθ+2λ(ecos2α1)(1+ξcosα)cosθ]+12gt}ξsinα=tuL[ecosαsin(θα)sinθ2λ(ecos2α1)(1+ξcosα)cosθ+gL2u2×tuL]ξsinα=η[ecosαsin(θα)sinθ2λ(ecos2α1)(1+ξcosα)cosθ+λη](I)foragivenλwecanfindξthrough(I).
Commented by mr W last updated on 20/Feb/21
Commented by mr W last updated on 20/Feb/21
Commented by mr W last updated on 19/Feb/21
Commented by mr W last updated on 19/Feb/21
Commented by mr W last updated on 19/Feb/21
Commented by mr W last updated on 19/Feb/21
for large angle θ there are more than  one possibilities for the same speed.
forlargeangleθtherearemorethanonepossibilitiesforthesamespeed.
Commented by mr W last updated on 20/Feb/21
Commented by mr W last updated on 20/Feb/21
Commented by mr W last updated on 20/Feb/21
Commented by mr W last updated on 19/Feb/21
Commented by mr W last updated on 20/Feb/21
Commented by mr W last updated on 20/Feb/21
Commented by otchereabdullai@gmail.com last updated on 23/Feb/21
world best !
worldbest!worldbest!

Leave a Reply

Your email address will not be published. Required fields are marked *