Menu Close

Question-133980




Question Number 133980 by mohammad17 last updated on 26/Feb/21
Answered by mr W last updated on 26/Feb/21
(∂p/∂x)=(x/( (√(x^2 +y^2 +z^2 ))))  (∂p/∂y)=(y/( (√(x^2 +y^2 +z^2 ))))  (∂p/∂z)=(z/( (√(x^2 +y^2 +z^2 ))))  (∂w/∂x)=(dw/dp)×(∂p/∂x)=(dw/dp)×(x/( (√(x^2 +y^2 +z^2 ))))  ((∂w/∂x))^2 =((dw/dp))^2 ×(x^2 /( x^2 +y^2 +z^2 ))  ((∂w/∂y))^2 =((dw/dp))^2 ×(y^2 /( x^2 +y^2 +z^2 ))  ((∂w/∂z))^2 =((dw/dp))^2 ×(z^2 /( x^2 +y^2 +z^2 ))  ⇒((∂w/∂x))^2 +((∂w/∂y))^2 +((∂w/∂z))^2 =((dw/dp))^2
$$\frac{\partial{p}}{\partial{x}}=\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }} \\ $$$$\frac{\partial{p}}{\partial{y}}=\frac{{y}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }} \\ $$$$\frac{\partial{p}}{\partial{z}}=\frac{{z}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }} \\ $$$$\frac{\partial{w}}{\partial{x}}=\frac{{dw}}{{dp}}×\frac{\partial{p}}{\partial{x}}=\frac{{dw}}{{dp}}×\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }} \\ $$$$\left(\frac{\partial{w}}{\partial{x}}\overset{\mathrm{2}} {\right)}=\left(\frac{{dw}}{{dp}}\right)^{\mathrm{2}} ×\frac{{x}^{\mathrm{2}} }{\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} } \\ $$$$\left(\frac{\partial{w}}{\partial{y}}\overset{\mathrm{2}} {\right)}=\left(\frac{{dw}}{{dp}}\right)^{\mathrm{2}} ×\frac{{y}^{\mathrm{2}} }{\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} } \\ $$$$\left(\frac{\partial{w}}{\partial{z}}\overset{\mathrm{2}} {\right)}=\left(\frac{{dw}}{{dp}}\right)^{\mathrm{2}} ×\frac{{z}^{\mathrm{2}} }{\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} } \\ $$$$\Rightarrow\left(\frac{\partial{w}}{\partial{x}}\overset{\mathrm{2}} {\right)}+\left(\frac{\partial{w}}{\partial{y}}\overset{\mathrm{2}} {\right)}+\left(\frac{\partial{w}}{\partial{z}}\overset{\mathrm{2}} {\right)}=\left(\frac{{dw}}{{dp}}\overset{\mathrm{2}} {\right)} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *