Menu Close

Question-134037




Question Number 134037 by benjo_mathlover last updated on 26/Feb/21
Answered by john_santu last updated on 27/Feb/21
49^(303) .3993^(202) .39^(606)  =  (7^2 )^(303) . 3^(606) .13^(606)  .3^(202) .11^(606)  =  (7×13×11)^(606) . 3^(808)  =  1001^(606)  .(3^(200) )^4 .3^8    [ note by 3^(400)  ≡ 1 mod 1000 ]  ≡ 1×1×3^8  (mod 1000)  ≡ 6561 (mod 1000)  ≡ 561 (mod 1000).  Hence it′s the last three digits  are 561.
$$\mathrm{49}^{\mathrm{303}} .\mathrm{3993}^{\mathrm{202}} .\mathrm{39}^{\mathrm{606}} \:= \\ $$$$\left(\mathrm{7}^{\mathrm{2}} \right)^{\mathrm{303}} .\:\mathrm{3}^{\mathrm{606}} .\mathrm{13}^{\mathrm{606}} \:.\mathrm{3}^{\mathrm{202}} .\mathrm{11}^{\mathrm{606}} \:= \\ $$$$\left(\mathrm{7}×\mathrm{13}×\mathrm{11}\right)^{\mathrm{606}} .\:\mathrm{3}^{\mathrm{808}} \:= \\ $$$$\mathrm{1001}^{\mathrm{606}} \:.\left(\mathrm{3}^{\mathrm{200}} \right)^{\mathrm{4}} .\mathrm{3}^{\mathrm{8}} \: \\ $$$$\left[\:{note}\:{by}\:\mathrm{3}^{\mathrm{400}} \:\equiv\:\mathrm{1}\:{mod}\:\mathrm{1000}\:\right] \\ $$$$\equiv\:\mathrm{1}×\mathrm{1}×\mathrm{3}^{\mathrm{8}} \:\left({mod}\:\mathrm{1000}\right) \\ $$$$\equiv\:\mathrm{6561}\:\left({mod}\:\mathrm{1000}\right) \\ $$$$\equiv\:\mathrm{561}\:\left({mod}\:\mathrm{1000}\right). \\ $$$${Hence}\:{it}'{s}\:{the}\:{last}\:{three}\:{digits} \\ $$$${are}\:\mathrm{561}.\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *