Menu Close

Question-134052




Question Number 134052 by shaker last updated on 27/Feb/21
Answered by mathmax by abdo last updated on 27/Feb/21
I =∫(x^3 /(x^6  +3))dx  ⇒I =∫  (x^3 /(x^6  +(3^(1/6) )^6 ))dx =_(x=3^(1/6) t)   ∫ ((3^(1/2) t^3 )/(3(1+t^6 ))) 3^(1/6)  dt  =3^((1/2)+(1/6)−1)  ∫  (t^3 /(t^6  +1))dt =3^(−(1/3))  ∫  (t^3 /(t^6  +1)) dt    z^6  +1=0 ⇒z^6  =e^(i(π+2kπ))  =e^(i(2k+1)π)  ⇒z_k =e^((i(2k+1)π)/6)  and  k∈[[0,5]] ⇒(t^3 /(t^6  +1)) =(t^3 /(Π_(k=0) ^5 (t−z_k )))=Σ_(k=0) ^5  (a_k /(t−z_k ))  a_k =(z_k ^3 /(6z_k ^5 )) =(z_k ^4 /(−6))=−(1/6) z_k ^4  ⇒(t^3 /(t^6  +1))=−(1/6)Σ_(k=0) ^5  (e^((i(2k+1)2π)/3) /(t−e^((i(2k+1)π)/6) )) ⇒  ∫  (t^3 /(1+t^6 ))dt =−(1/6)Σ_(k=0) ^5  e^((2πi(2k+1))/3) ln(t−e^((i(2k+1)π)/6) ) +C
I=x3x6+3dxI=x3x6+(316)6dx=x=316t312t33(1+t6)316dt=312+161t3t6+1dt=313t3t6+1dtz6+1=0z6=ei(π+2kπ)=ei(2k+1)πzk=ei(2k+1)π6andk[[0,5]]t3t6+1=t3k=05(tzk)=k=05aktzkak=zk36zk5=zk46=16zk4t3t6+1=16k=05ei(2k+1)2π3tei(2k+1)π6t31+t6dt=16k=05e2πi(2k+1)3ln(tei(2k+1)π6)+C

Leave a Reply

Your email address will not be published. Required fields are marked *