Question Number 134211 by rs4089 last updated on 01/Mar/21
Answered by mr W last updated on 01/Mar/21
$${u}={x}^{{m}} {y}^{{n}} \left({a}−{x}−{y}\right)^{{p}} \\ $$$$\frac{\partial{u}}{\partial{x}}={y}^{{n}} \left[{mx}^{{m}−\mathrm{1}} \left({a}−{x}−{y}\right)^{{p}} −{x}^{{m}} {p}\left({a}−{x}−{y}\right)^{{p}−\mathrm{1}} \right] \\ $$$$={y}^{{n}} {x}^{{m}−\mathrm{1}} \left({a}−{x}−{y}\right)^{{p}−\mathrm{1}} \left[{m}\left({a}−{x}−{y}\right)−{xp}\right]=\mathrm{0} \\ $$$$\Rightarrow{m}\left({a}−{x}−{y}\right)−{xp}=\mathrm{0}\:\:…\left({i}\right) \\ $$$${similarly} \\ $$$$\Rightarrow{n}\left({a}−{x}−{y}\right)−{yp}=\mathrm{0}\:\:\:…\left({ii}\right) \\ $$$$\Rightarrow\frac{{x}}{{y}}=\frac{{m}}{{n}} \\ $$$$\Rightarrow{x}=\frac{{ma}}{{m}+{n}+{p}} \\ $$$$\Rightarrow{y}=\frac{{na}}{{m}+{n}+{p}} \\ $$$$\Rightarrow{z}=\frac{{pa}}{{m}+{n}+{p}} \\ $$$${u}_{{max}} =\left(\frac{{ma}}{{m}+{n}+{p}}\right)^{{m}} \left(\frac{{na}}{{m}+{n}+{p}}\right)^{{n}} \left(\frac{{pa}}{{m}+{n}+{p}}\overset{{p}} {\right)} \\ $$$$=\left(\frac{{a}}{{m}+{n}+{p}}\right)^{{m}+{n}+{p}} {m}^{{m}} {n}^{{n}} {p}^{{p}} \\ $$