Question Number 134599 by mohammad17 last updated on 05/Mar/21
Answered by Olaf last updated on 05/Mar/21
$$\left.{a}\right) \\ $$$$\int_{\mathrm{C}} \mid{z}\mid^{\mathrm{2}} {dz}\:=\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \mid{re}^{{i}\frac{\pi}{\mathrm{4}}} \mid^{\mathrm{2}} {dr}\:=\:\left[\frac{{r}^{\mathrm{3}} }{\mathrm{3}}\right]_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \:=\:\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$$$\left.{b}\right) \\ $$$$\int_{\mathrm{C}} \mid{z}\mid{dz}\:=\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \mid{re}^{{i}\frac{\pi}{\mathrm{4}}} \mid{dr}\:=\:\left[\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \:=\:\mathrm{1} \\ $$$$\left.{c}\right) \\ $$$$\int_{\mathrm{C}} {xdz}\:=\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} {r}\mathrm{cos}\frac{\pi}{\mathrm{4}}{dr}\:=\:\left[\frac{{r}^{\mathrm{2}} }{\mathrm{2}\sqrt{\mathrm{2}}}\right]_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$