Question Number 134651 by 0731619177 last updated on 06/Mar/21
Answered by Ar Brandon last updated on 06/Mar/21
$$\mathrm{sinx}=\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}} \frac{\mathrm{x}^{\mathrm{2n}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\:\Rightarrow\mathrm{sin}\pi\mathrm{x}=\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}} \frac{\left(\pi\mathrm{x}\right)^{\mathrm{2n}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{1}\right)!} \\ $$$$\mathcal{I}=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{x}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)}\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}} \frac{\left(\pi\mathrm{x}\right)^{\mathrm{2n}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{1}\right)!} \\ $$$$\:\:\:=\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}} \frac{\pi^{\mathrm{2n}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{x}^{\mathrm{2n}+\mathrm{1}} }{\mathrm{x}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)}\mathrm{dx} \\ $$$$\:\:\:=\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}} \frac{\pi^{\mathrm{2n}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\int_{\mathrm{0}} ^{\infty} \mathrm{x}^{\mathrm{2n}} \underset{\mathrm{k}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{x}^{\mathrm{2k}} \\ $$$$\:\:\:=\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}} \frac{\pi^{\mathrm{2n}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\underset{\mathrm{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\frac{\mathrm{x}^{\mathrm{2n}+\mathrm{2k}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{2k}+\mathrm{1}\right)}\right]_{\mathrm{0}} ^{\infty} \\ $$
Commented by 0731619177 last updated on 06/Mar/21
$${tanks} \\ $$