Question Number 134915 by BHOOPENDRA last updated on 08/Mar/21
Answered by Olaf last updated on 08/Mar/21
$$\mathrm{Fourier}\:: \\ $$$${a}_{\mathrm{0}} \left({f}\right)\:=\:\frac{\mathrm{1}}{\mathrm{T}}\int_{−\frac{\mathrm{T}}{\mathrm{2}}} ^{+\frac{\mathrm{T}}{\mathrm{2}}} {f}\left({t}\right){dt} \\ $$$${a}_{\mathrm{0}} \left({f}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{−\mathrm{1}} ^{+\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right){dt} \\ $$$${a}_{\mathrm{0}} \left({f}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left[{t}−\frac{{t}^{\mathrm{3}} }{\mathrm{3}}\right]_{−\mathrm{1}} ^{+\mathrm{1}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{4}}{\mathrm{3}}\right)\:=\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${a}_{{n}} \left({f}\right)\:=\:\frac{\mathrm{2}}{\mathrm{T}}\int_{−\frac{\mathrm{T}}{\mathrm{2}}} ^{+\frac{\mathrm{T}}{\mathrm{2}}} {f}\left({t}\right)\mathrm{cos}\left({nt}\frac{\mathrm{2}\pi}{\mathrm{T}}\right){dt} \\ $$$${a}_{{n}} \left({f}\right)\:=\:\int_{−\mathrm{1}} ^{+\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)\mathrm{cos}\left(\pi{nt}\right){dt} \\ $$$${a}_{{n}} \left({f}\right)\:=\:\left[\left(\mathrm{1}−{t}^{\mathrm{2}} \right)\frac{\mathrm{sin}\left(\pi{nt}\right)}{\pi{n}}\right]_{−\mathrm{1}} ^{+\mathrm{1}} −\int_{−\mathrm{1}} ^{+\mathrm{1}} \left(−\mathrm{2}{t}\right)\frac{\mathrm{sin}\left(\pi{nt}\right)}{\pi{n}}{dt} \\ $$$${a}_{{n}} \left({f}\right)\:=\:\frac{\mathrm{2}}{\pi{n}}\:\int_{−\mathrm{1}} ^{+\mathrm{1}} {t}\mathrm{sin}\left(\pi{nt}\right){dt} \\ $$$${a}_{{n}} \left({f}\right)\:=\:\frac{\mathrm{2}}{\pi{n}}\left[{t}\left(−\frac{\mathrm{cos}\left(\pi{nt}\right)}{\pi{n}}\right)\right]_{−\mathrm{1}} ^{+\mathrm{1}} −\frac{\mathrm{2}}{\pi{n}}\:\int_{−\mathrm{1}} ^{+\mathrm{1}} \left(−\frac{\mathrm{cos}\left(\pi{nt}\right)}{\pi{n}}\right){dt} \\ $$$${a}_{{n}} \left({f}\right)\:=\:\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \frac{\mathrm{4}}{\pi^{\mathrm{2}} {n}^{\mathrm{2}} }+\frac{\mathrm{2}}{\pi^{\mathrm{2}} {n}^{\mathrm{2}} }\:\int_{−\mathrm{1}} ^{+\mathrm{1}} \mathrm{cos}\left(\pi{nt}\right){dt} \\ $$$${a}_{{n}} \left({f}\right)\:=\:\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \frac{\mathrm{4}}{\pi^{\mathrm{2}} {n}^{\mathrm{2}} } \\ $$$${b}_{{n}} \left({f}\right)\:=\:\int_{−\mathrm{1}} ^{+\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)\mathrm{sin}\left(\pi{nt}\right){dt} \\ $$$${b}_{{n}} \left({f}\right)\:=\:\mathrm{0}\:\left({f}\:\mathrm{is}\:\mathrm{a}\:\mathrm{even}\:\mathrm{function}\right) \\ $$$$ \\ $$$${f}\left({t}\right)\:=\:{a}_{\mathrm{0}} \left({f}\right)+\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}{a}_{{n}} \left({f}\right)\mathrm{cos}\left(\pi{nt}\right) \\ $$$$… \\ $$
Commented by BHOOPENDRA last updated on 08/Mar/21
$${thanks}\:{sir} \\ $$