Question Number 135173 by bemath last updated on 11/Mar/21
Answered by john_santu last updated on 11/Mar/21
$${Homogenous}\:{problem} \\ $$$${y}_{{h}} '''−{y}_{{h}} ''−\mathrm{2}{y}_{{h}} '\:=\:\mathrm{0} \\ $$$${let}\:{y}_{{h}} \:=\:{e}^{{mx}} \:{to}\:{get}\:{m}^{\mathrm{3}} −{m}^{\mathrm{2}} −\mathrm{2}{m}\:=\:\mathrm{0} \\ $$$${m}\left({m}^{\mathrm{2}} −{m}−\mathrm{2}\right)\:=\:\mathrm{0} \\ $$$${m}=\mathrm{0}\:,\:{m}=−\mathrm{1}\:,\:{m}=\mathrm{2} \\ $$$${Homogenous}\:{solution}\: \\ $$$${y}_{{h}} \:=\:{C}_{\mathrm{1}} +{C}_{\mathrm{2}} {e}^{−{x}} +{C}_{\mathrm{3}} {e}^{\mathrm{2}{x}} \\ $$$${Particular}\:{solution} \\ $$$${y}_{{p}} =\:{a}\mathrm{sin}\:\left(\mathrm{2}{x}\right)+{b}\mathrm{cos}\:\left(\mathrm{2}{x}\right)+{cxe}^{−{x}} \\ $$$${solving}\:{for}\:{coefficients} \\ $$$${we}\:{get}\:{y}_{{p}} =\:−\frac{\mathrm{3}}{\mathrm{10}}\mathrm{sin}\:\left(\mathrm{2}{x}\right)+\frac{\mathrm{1}}{\mathrm{10}}\mathrm{cos}\:\left(\mathrm{2}{x}\right)+\frac{\mathrm{1}}{\mathrm{3}}{xe}^{−{x}} \\ $$$${The}\:\mathcal{G}{eneral}\:{solution} \\ $$$${y}={C}_{\mathrm{1}} +{C}_{\mathrm{2}} {e}^{−{x}} +{C}_{\mathrm{3}} {e}^{\mathrm{2}{x}} −\left\{\frac{\mathrm{3sin}\:\left(\mathrm{2}{x}\right)−\mathrm{cos}\:\left(\mathrm{2}{x}\right)}{\mathrm{10}}\right\}+\frac{{xe}^{−{x}} }{\mathrm{3}} \\ $$$${computing}\:{y}\left(\mathrm{0}\right)={y}'\left(\mathrm{0}\right)=\mathrm{0}\:,\:{y}''\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${we}\:{get}\:{C}_{\mathrm{1}} =−\mathrm{1},\:{C}_{\mathrm{2}} =\frac{\mathrm{23}}{\mathrm{45}}\:{and}\:{C}_{\mathrm{3}} =\frac{\mathrm{7}}{\mathrm{18}} \\ $$$${Therefore}\:{solution}\:{is} \\ $$$${y}\:=\:−\mathrm{1}+\frac{\mathrm{23}}{\mathrm{45}}{e}^{−{x}} +\frac{\mathrm{7}}{\mathrm{18}}{e}^{\mathrm{2}{x}} −\left\{\frac{\mathrm{3sin}\:\left(\mathrm{2}{x}\right)−\mathrm{cos}\:\left(\mathrm{2}{x}\right)}{\mathrm{10}}\right\}+\frac{{xe}^{−{x}} }{\mathrm{3}} \\ $$$$ \\ $$
Answered by Ñï= last updated on 11/Mar/21
$${y}_{{p}} =\frac{\mathrm{1}}{{D}^{\mathrm{3}} −{D}^{\mathrm{2}} −\mathrm{2}{D}}{e}^{−{x}} +\frac{\mathrm{1}}{{D}^{\mathrm{3}} −{D}^{\mathrm{2}} −\mathrm{2}{D}}\mathrm{4cos}\:\mathrm{2}{x} \\ $$$$={x}\frac{\mathrm{1}}{\left({D}^{\mathrm{3}} −{D}^{\mathrm{2}} −\mathrm{2}{D}\right)'}{e}^{−{x}} +\mathrm{2}\frac{\mathrm{1}}{{D}^{\mathrm{2}} −{D}−\mathrm{2}}\mathrm{sin}\:\mathrm{2}{x} \\ $$$$={x}\frac{\mathrm{1}}{\mathrm{3}{D}^{\mathrm{2}} −\mathrm{2}{D}−\mathrm{2}}{e}^{−{x}} +\mathrm{2}\frac{{D}^{\mathrm{2}} −\mathrm{2}+{D}}{\left({D}^{\mathrm{2}} −\mathrm{2}\right)^{\mathrm{2}} −{D}^{\mathrm{2}} }\mathrm{sin}\:\mathrm{2}{x} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}{xe}^{−{x}} +\frac{\left(−\mathrm{6}+{D}\right)}{\mathrm{20}}\mathrm{sin}\:\mathrm{2}{x} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}{xe}^{−{x}} +\frac{\mathrm{1}}{\mathrm{10}}{cos}\:\mathrm{2}{x}−\frac{\mathrm{3}}{\mathrm{10}}\mathrm{sin}\:\mathrm{2}{x} \\ $$$${y}={C}_{\mathrm{1}} +{C}_{\mathrm{2}} {e}^{−{x}} +{C}_{\mathrm{3}} {e}^{\mathrm{2}{x}} +\frac{\mathrm{1}}{\mathrm{3}}{xe}^{−{x}} +\frac{\mathrm{1}}{\mathrm{10}}\mathrm{cos}\:\mathrm{2}{x}−\frac{\mathrm{3}}{\mathrm{10}}\mathrm{sin}\:\mathrm{2}{x} \\ $$