Menu Close

Question-135204




Question Number 135204 by victoras last updated on 11/Mar/21
Answered by benjo_mathlover last updated on 11/Mar/21
81^(sin^2 x)  + 81^(1−sin^2 x)  = 30  let 81^(sin^2 x)  = z   ⇒z + ((81)/z) = 30   ⇒z^2 −30z +81 = 0  ⇒(z−27)(z−3)=0   { ((81^(sin^2 x)  = 27 ⇒sin^2 x = (3/4))),((81^(sin^2 x)  = 3 ⇒sin^2 x = (1/4))) :}
$$\mathrm{81}^{\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}} \:+\:\mathrm{81}^{\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}} \:=\:\mathrm{30} \\ $$$$\mathrm{let}\:\mathrm{81}^{\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}} \:=\:\mathrm{z}\: \\ $$$$\Rightarrow\mathrm{z}\:+\:\frac{\mathrm{81}}{\mathrm{z}}\:=\:\mathrm{30}\: \\ $$$$\Rightarrow\mathrm{z}^{\mathrm{2}} −\mathrm{30z}\:+\mathrm{81}\:=\:\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{z}−\mathrm{27}\right)\left(\mathrm{z}−\mathrm{3}\right)=\mathrm{0} \\ $$$$\begin{cases}{\mathrm{81}^{\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}} \:=\:\mathrm{27}\:\Rightarrow\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}\:=\:\frac{\mathrm{3}}{\mathrm{4}}}\\{\mathrm{81}^{\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}} \:=\:\mathrm{3}\:\Rightarrow\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}\:=\:\frac{\mathrm{1}}{\mathrm{4}}}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *