Menu Close

Question-135540




Question Number 135540 by mohammad17 last updated on 13/Mar/21
Answered by Olaf last updated on 13/Mar/21
Q1a)  1/   S_n  = Σ_(k=1) ^n [(1/5^k )−(1/(k(k+1)))]  S_n  = Σ_(k=1) ^n [(1/5^k )−((1/k)−(1/(k+1)))]  S_n  = (1/5).((1−((1/5))^n )/(1−(1/5)))−(1−(1/(n+1)))  S_n  = −(3/4)−(1/4)((1/5))^n +(1/(n+1))  lim_(n→∞) S_n  = −(3/4)    2/   S_n  = Σ_(k=0) ^n (((−1)^k )/3^(k+1) ) = (1/3)Σ_(k=0) ^n (−(1/3))^k   S_n  = (1/3)×1.((1−(−(1/3))^(n+1) )/(1−(−(1/3))))  S_n  = ((1−(−(1/3))^(n+1) )/4)  lim_(n→∞) S_n  = (1/4)    Q1b)  1/   S_n  = Σ_(k=1) ^n (((√(k+1))−(√k))/( (√(k^2 +k))))  S_n  = Σ_(k=1) ^n (((√(k+1))−(√k))/( (√k).(√(k+1))))  S_n  = Σ_(k=1) ^n [(1/( (√k)))−(1/( (√(k+1))))]  S_n  = 1−(1/( (√(n+1))))  lim_(n→∞) S_n  = 1    2/   S_n  = Σ_(k=1) ^n [(1/k)−(1/(k+2))]  S_n  = 1+(1/2)−(1/(n+1))−(1/(n+2))  lim_(n→∞) S_n  = (3/2)
Q1a)1/Sn=nk=1[15k1k(k+1)]Sn=nk=1[15k(1k1k+1)]Sn=15.1(15)n115(11n+1)Sn=3414(15)n+1n+1Double subscripts: use braces to clarify2/Sn=nk=0(1)k3k+1=13nk=0(13)kSn=13×1.1(13)n+11(13)Sn=1(13)n+14Double subscripts: use braces to clarifyQ1b)1/Sn=nk=1k+1kk2+kSn=nk=1k+1kk.k+1Sn=nk=1[1k1k+1]Sn=11n+1Double subscripts: use braces to clarify2/Sn=nk=1[1k1k+2]Sn=1+121n+11n+2Double subscripts: use braces to clarify
Answered by Olaf last updated on 13/Mar/21
Q3a)  1/ ∫sinx^3  dx = ∫Σ_(n=0) ^∞ (−1)^n (((x^3 )^(2n+1) )/((2n+1)!)) dx  = Σ_(n=0) ^∞ (−1)^n (x^(6n+4) /((6n+4)(2n+1)!))  = (x^4 /2)Σ_(n=0) ^∞ (−1)^n (x^(6n) /((3n+2)(2n+1)!))  2/  ∫ln(1+x)dx = ∫Σ_(n=0) ^∞ (−1)^n (x^(n+1) /(n+1)) dx  = Σ_(n=0) ^∞ (−1)^n (x^(n+2) /((n+1)(n+2)))  = −xΣ_(n=1) ^∞ (−1)^n (x^n /(n(n+1)))
Q3a)1/sinx3dx=n=0(1)n(x3)2n+1(2n+1)!dx=n=0(1)nx6n+4(6n+4)(2n+1)!=x42n=0(1)nx6n(3n+2)(2n+1)!2/ln(1+x)dx=n=0(1)nxn+1n+1dx=n=0(1)nxn+2(n+1)(n+2)=xn=1(1)nxnn(n+1)
Answered by Olaf last updated on 13/Mar/21
Q2)  1/   e^x  = Σ_(n=0) ^∞ (x^n /(n!)) ⇒ Σ_(n=1) ^∞ (e^n /(n!)) = e^e −1  2/   Σ_(k=2) ^∞ ((lnk)/(k−1)) ≥ Σ_(k=2) ^∞ ((ln2)/(k−1)) = ln2Σ_(k=1) ^∞ (1/k)  But the harmonic serie Σ(1/k) diverges  ⇒ the serie Σ_(k=2) ^∞ ((lnk)/(k−1)) diverges too  3/  (1/(1−α)) = Σ_(n=0) ^∞ α^n  converges if ∣α∣<1  4/  Σ_(n=1) ^∞ (1/(n^2 +1)) ≤ Σ_(n=1) ^∞ (1/n^2 )  But the serie Σ(1/k^2 ) converges (→(π^2 /6))  ⇒ the serie Σ_(k=2) ^∞ ((lnk)/(k−1)) converges too  5/  4Σ_(n=1) ^∞ (1/n^4 ) converges  6/  Σ_(x=1) ^∞ ((sin^2 x)/x) Σ_(x=1) ^∞ ((1−cos(2x))/(2x))  But the serie Σ((cos(2n))/n^2 ) converges (Abel)  and the harmonic serie Σ(1/(2n)) diverges  ⇒ the serie Σ_(x=1) ^∞ ((sin^2 x)/x) diverges
Q2)1/ex=n=0xnn!n=1enn!=ee12/k=2lnkk1k=2ln2k1=ln2k=11kButtheharmonicserieΣ1kdivergestheseriek=2lnkk1divergestoo3/11α=n=0αnconvergesifα∣<14/n=11n2+1n=11n2ButtheserieΣ1k2converges(π26)theseriek=2lnkk1convergestoo5/4n=11n4converges6/x=1sin2xxx=11cos(2x)2xButtheserieΣcos(2n)n2converges(Abel)andtheharmonicserieΣ12ndivergestheseriex=1sin2xxdiverges
Answered by mathmax by abdo last updated on 14/Mar/21
2)Σ_(n=0) ^∞  (((−1)^n )/3^(n+1) )=(1/3)Σ_(n=0) ^∞ (−(1/3))^n  =(1/3)×(1/(1+(1/3)))=(1/3).(3/4)=(1/4)
2)n=0(1)n3n+1=13n=0(13)n=13×11+13=13.34=14

Leave a Reply

Your email address will not be published. Required fields are marked *