Menu Close

Question-135996




Question Number 135996 by mnjuly1970 last updated on 17/Mar/21
Answered by Dwaipayan Shikari last updated on 17/Mar/21
∫_0 ^1 Σ_(n=1) ^∞ (x^(n+1) /n^2 )dx  =Σ_(n=1) ^∞ (1/(n^2 (n+2)))=(1/2)Σ_(n=1) ^∞ (1/n^2 )−(1/4)Σ_(n=1) ^∞ (1/n)−(1/(n+2))  =(π^2 /(12))−(1/4)((3/2))=(π^2 /(12))−(3/8)
$$\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}+\mathrm{1}} }{{n}^{\mathrm{2}} }{dx} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} \left({n}+\mathrm{2}\right)}=\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{4}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{2}} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{12}}−\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{12}}−\frac{\mathrm{3}}{\mathrm{8}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *