Question Number 136043 by JulioCesar last updated on 18/Mar/21
Answered by rs4089 last updated on 18/Mar/21
$$\int{sec}^{\mathrm{8}} {x}.{dx} \\ $$$$\int\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}\right)^{\mathrm{3}} {sec}^{\mathrm{2}} {x}.{dx} \\ $$$${tanx}={t}\:\Rightarrow{sec}^{\mathrm{2}} {x}.{dx}={dt} \\ $$$$\int\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{3}} {dt} \\ $$$$\int\left(\mathrm{1}+{t}^{\mathrm{6}} +\mathrm{3}{t}^{\mathrm{2}} +\mathrm{3}{t}^{\mathrm{4}} \right){dt} \\ $$$${t}+\frac{{t}^{\mathrm{7}} }{\mathrm{7}}+{t}^{\mathrm{3}} +\mathrm{3}\frac{{t}^{\mathrm{5}} }{\mathrm{5}}+{C} \\ $$$${tanx}+\frac{{tan}^{\mathrm{7}} {x}}{\mathrm{7}}+{tan}^{\mathrm{3}} {x}+\mathrm{3}\frac{{tan}^{\mathrm{5}} {x}}{\mathrm{5}}+{C} \\ $$
Answered by Olaf last updated on 18/Mar/21
$$\mathrm{I}\:=\:\int\frac{{dx}}{\mathrm{cos}^{\mathrm{8}} {x}} \\ $$$$\mathrm{I}\:=\:\int\left(\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{6}} {x}}+\frac{\mathrm{sin}^{\mathrm{2}} {x}}{\mathrm{cos}^{\mathrm{8}} {x}}\right){dx} \\ $$$$\mathrm{I}\:=\:\int\left(\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{4}} {x}}+\frac{\mathrm{sin}^{\mathrm{2}} {x}}{\mathrm{cos}^{\mathrm{6}} {x}}+\frac{\mathrm{sin}^{\mathrm{2}} {x}}{\mathrm{cos}^{\mathrm{8}} {x}}\right){dx} \\ $$$$\mathrm{I}\:=\:\int\left(\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} {x}}+\frac{\mathrm{sin}^{\mathrm{2}} {x}}{\mathrm{cos}^{\mathrm{4}} {x}}+\frac{\mathrm{sin}^{\mathrm{2}} {x}}{\mathrm{cos}^{\mathrm{6}} {x}}+\frac{\mathrm{sin}^{\mathrm{2}} {x}}{\mathrm{cos}^{\mathrm{8}} {x}}\right){dx} \\ $$$$\mathrm{I}\:=\:\int\left(\mathrm{1}+\frac{\mathrm{sin}^{\mathrm{2}} {x}}{\mathrm{cos}^{\mathrm{2}} {x}}+\frac{\mathrm{sin}^{\mathrm{2}} {x}}{\mathrm{cos}^{\mathrm{4}} {x}}+\frac{\mathrm{sin}^{\mathrm{2}} {x}}{\mathrm{cos}^{\mathrm{6}} {x}}+\frac{\mathrm{sin}^{\mathrm{2}} {x}}{\mathrm{cos}^{\mathrm{8}} {x}}\right){dx} \\ $$$$\mathrm{I}\:=\:{x}+\int\mathrm{sin}{x}\left(\frac{\mathrm{sin}{x}}{\mathrm{cos}^{\mathrm{2}} {x}}+\frac{\mathrm{sin}{x}}{\mathrm{cos}^{\mathrm{4}} {x}}+\frac{\mathrm{sin}{x}}{\mathrm{cos}^{\mathrm{6}} {x}}+\frac{\mathrm{sin}{x}}{\mathrm{cos}^{\mathrm{8}} {x}}\right){dx} \\ $$$$\mathrm{I}\:=\:{x}+\mathrm{sin}{x}\left(\frac{\mathrm{1}}{\mathrm{cos}{x}}+\frac{\mathrm{1}}{\mathrm{3cos}^{\mathrm{3}} {x}}+\frac{\mathrm{1}}{\mathrm{5cos}^{\mathrm{5}} {x}}+\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{7}} {x}}\right) \\ $$$$−\int\mathrm{cos}{x}\left(\frac{\mathrm{1}}{\mathrm{cos}{x}}+\frac{\mathrm{1}}{\mathrm{3cos}^{\mathrm{3}} {x}}+\frac{\mathrm{1}}{\mathrm{5cos}^{\mathrm{5}} {x}}+\frac{\mathrm{1}}{\mathrm{7cos}^{\mathrm{7}} {x}}\right){dx} \\ $$$$\mathrm{I}\:=\:\mathrm{sin}{x}\left(\frac{\mathrm{1}}{\mathrm{cos}{x}}+\frac{\mathrm{1}}{\mathrm{3cos}^{\mathrm{3}} {x}}+\frac{\mathrm{1}}{\mathrm{5cos}^{\mathrm{5}} {x}}+\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{7}} {x}}\right) \\ $$$$−\int\left(\frac{\mathrm{1}}{\mathrm{3cos}^{\mathrm{2}} {x}}+\frac{\mathrm{1}}{\mathrm{5cos}^{\mathrm{4}} {x}}+\frac{\mathrm{1}}{\mathrm{7cos}^{\mathrm{6}} {x}}\right){dx} \\ $$$$…{etc} \\ $$$$\mathrm{I}\:=\:\frac{\mathrm{sin}{x}}{\mathrm{35}}\left(\frac{\mathrm{16}}{\mathrm{cos}{x}}+\frac{\mathrm{8}}{\mathrm{cos}^{\mathrm{3}} {x}}+\frac{\mathrm{6}}{\mathrm{cos}^{\mathrm{5}} {x}}+\frac{\mathrm{5}}{\mathrm{cos}^{\mathrm{7}} {x}}\right)+\mathrm{C} \\ $$$$\mathrm{I}\:=\:\frac{\mathrm{sin}{x}}{\mathrm{35}}\left(\mathrm{16sec}{x}+\mathrm{8sec}^{\mathrm{3}} {x}+\mathrm{6cos}^{\mathrm{5}} {x}+\mathrm{5sec}^{\mathrm{7}} \right)+\mathrm{C} \\ $$