Menu Close

Question-136279




Question Number 136279 by aupo14 last updated on 20/Mar/21
Answered by mindispower last updated on 20/Mar/21
=∫e^(x+(1/x)) dx+∫x(1−(1/x^2 ))e^(x+(1/x)) dx=A  2nd by part  ∫x(1−(1/x^2 ))e^(x+(1/x)) dx=xe^(x+(1/x)) −∫e^(x+(1/x))   ⇔∫x(1−(1/x^2 ))e^(x+(1/x)) dx+∫e^(x+(1/x)) dx=xe^(x+(1/x))   ⇔∫(1+x−(1/x))e^(x+(1/x)) dx=xe^(x+(1/x)) +c
$$=\int{e}^{{x}+\frac{\mathrm{1}}{{x}}} {dx}+\int{x}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){e}^{{x}+\frac{\mathrm{1}}{{x}}} {dx}={A} \\ $$$$\mathrm{2}{nd}\:{by}\:{part} \\ $$$$\int{x}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){e}^{{x}+\frac{\mathrm{1}}{{x}}} {dx}={xe}^{{x}+\frac{\mathrm{1}}{{x}}} −\int{e}^{{x}+\frac{\mathrm{1}}{{x}}} \\ $$$$\Leftrightarrow\int{x}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){e}^{{x}+\frac{\mathrm{1}}{{x}}} {dx}+\int{e}^{{x}+\frac{\mathrm{1}}{{x}}} {dx}={xe}^{{x}+\frac{\mathrm{1}}{{x}}} \\ $$$$\Leftrightarrow\int\left(\mathrm{1}+{x}−\frac{\mathrm{1}}{{x}}\right){e}^{{x}+\frac{\mathrm{1}}{{x}}} {dx}={xe}^{{x}+\frac{\mathrm{1}}{{x}}} +{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *