Question Number 136353 by BHOOPENDRA last updated on 21/Mar/21
Commented by BHOOPENDRA last updated on 21/Mar/21
$${mr}.{W}\:{sir}\:{here}\:{is}\:{full}\:{question}\:? \\ $$
Answered by mr W last updated on 21/Mar/21
Commented by mr W last updated on 21/Mar/21
$$\boldsymbol{{Part}}\:\boldsymbol{{I}} \\ $$$${a}\left({t}\right)=\begin{cases}{\mathrm{0}\:{for}\:\mathrm{0}\leqslant{t}<{t}_{\mathrm{1}} }\\{−{c}\left({t}−{t}_{\mathrm{1}} \right)\:{for}\:{t}_{\mathrm{1}} \leqslant{t}\leqslant{t}_{\mathrm{2}} }\end{cases} \\ $$$$ \\ $$$$\mathrm{0}\leqslant{t}<{t}_{\mathrm{1}} : \\ $$$${v}\left({t}\right)={v}_{\mathrm{0}} \\ $$$${s}\left({t}\right)={v}_{\mathrm{0}} {t} \\ $$$${s}\left({t}_{\mathrm{1}} \right)={v}_{\mathrm{0}} {t}_{\mathrm{1}} \\ $$$$ \\ $$$${t}_{\mathrm{1}} \leqslant{t}\leqslant{t}_{\mathrm{2}} : \\ $$$${v}\left({t}\right)={v}_{\mathrm{0}} +\int_{{t}_{\mathrm{1}} } ^{{t}} {a}\left({t}\right){dt} \\ $$$$\:\:\:\:\:\:\:\:\:={v}_{\mathrm{0}} −{c}\int_{{t}_{\mathrm{1}} } ^{{t}} \left({t}−{t}_{\mathrm{1}} \right){dt} \\ $$$$\:\:\:\:\:\:\:\:\:={v}_{\mathrm{0}} −{c}\left[\frac{\left({t}−{t}_{\mathrm{1}} \right)^{\mathrm{2}} }{\mathrm{2}}\right]_{{t}_{\mathrm{1}} } ^{{t}} \\ $$$$\:\:\:\:\:\:\:\:\:={v}_{\mathrm{0}} −\frac{{c}\left({t}−{t}_{\mathrm{1}} \right)^{\mathrm{2}} }{\mathrm{2}} \\ $$$${v}\left({t}_{\mathrm{2}} \right)={v}_{\mathrm{0}} −\frac{{c}\left({t}_{\mathrm{2}} −{t}_{\mathrm{1}} \right)^{\mathrm{2}} }{\mathrm{2}}=\mathrm{0} \\ $$$$\Rightarrow{v}_{\mathrm{0}} =\frac{{c}\left({t}_{\mathrm{2}} −{t}_{\mathrm{1}} \right)^{\mathrm{2}} }{\mathrm{2}} \\ $$$${s}\left({t}\right)={s}\left({t}_{\mathrm{1}} \right)+\int_{{t}_{\mathrm{1}} } ^{{t}} {v}\left({t}\right){dt} \\ $$$$\:\:\:\:\:\:\:={v}_{\mathrm{0}} {t}_{\mathrm{1}} +\int_{{t}_{\mathrm{1}} } ^{{t}} \left[{v}_{\mathrm{0}} −\frac{{c}\left({t}−{t}_{\mathrm{1}} \right)^{\mathrm{2}} }{\mathrm{2}}\right]{dt} \\ $$$$\:\:\:\:\:\:\:={v}_{\mathrm{0}} {t}_{\mathrm{1}} +\left[{v}_{\mathrm{0}} {t}−\frac{{c}\left({t}−{t}_{\mathrm{1}} \right)^{\mathrm{3}} }{\mathrm{6}}\right]_{{t}_{\mathrm{1}} } ^{{t}} \\ $$$$\:\:\:\:\:\:\:={v}_{\mathrm{0}} {t}_{\mathrm{1}} +\left[{v}_{\mathrm{0}} {t}−\frac{{c}\left({t}−{t}_{\mathrm{1}} \right)^{\mathrm{3}} }{\mathrm{6}}−{v}_{\mathrm{0}} {t}_{\mathrm{1}} \right] \\ $$$$\:\:\:\:\:\:\:={v}_{\mathrm{0}} {t}−\frac{{c}\left({t}−{t}_{\mathrm{1}} \right)^{\mathrm{3}} }{\mathrm{6}} \\ $$
Commented by mr W last updated on 21/Mar/21
Commented by BHOOPENDRA last updated on 21/Mar/21
$${thanku}\:{sir} \\ $$
Commented by BHOOPENDRA last updated on 21/Mar/21
$${part}\:{b}\:{sir}? \\ $$
Commented by mr W last updated on 21/Mar/21
$$\boldsymbol{{Part}}\:\boldsymbol{{II}} \\ $$$${given}\:{c}=\mathrm{6}\:{m}/{s}^{\mathrm{3}} ,\:{t}_{\mathrm{1}} =\mathrm{1}\:{s},\:{v}_{\mathrm{0}} =\mathrm{12}\:{m}/{s}^{\mathrm{2}} \\ $$$${v}_{\mathrm{0}} =\frac{{c}\left({t}_{\mathrm{2}} −{t}_{\mathrm{1}} \right)^{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{6}\left({t}_{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}}=\mathrm{12} \\ $$$$\Rightarrow{t}_{\mathrm{2}} =\mathrm{3}\:{s} \\ $$$${s}\left({t}_{\mathrm{2}} \right)={v}_{\mathrm{0}} {t}_{\mathrm{2}} −\frac{{c}\left({t}_{\mathrm{2}} −{t}_{\mathrm{1}} \right)^{\mathrm{3}} }{\mathrm{6}} \\ $$$$\:\:\:\:=\mathrm{12}×\mathrm{3}−\frac{\mathrm{6}\left(\mathrm{3}−\mathrm{1}\right)^{\mathrm{3}} }{\mathrm{6}}=\mathrm{28}\:{m} \\ $$$${velocity}\:{of}\:{biker}: \\ $$$${v}_{{B}} =\frac{\mathrm{17}+\mathrm{28}}{\mathrm{3}}=\mathrm{15}\:{m}/{s} \\ $$
Commented by BHOOPENDRA last updated on 21/Mar/21
$${thanks}\:{sir} \\ $$