Menu Close

Question-136520




Question Number 136520 by mey3nipaba last updated on 22/Mar/21
Commented by mey3nipaba last updated on 22/Mar/21
help please.
helpplease.
Answered by mindispower last updated on 22/Mar/21
⇔ { ((2^x =3^y ⇒x=((yln(3))/(ln(2))))),(((x−1)=((y−1)/(ln(3)))ln(2))) :}
{2x=3yx=yln(3)ln(2)(x1)=y1ln(3)ln(2)
Answered by Rasheed.Sindhi last updated on 23/Mar/21
2^(x+y) =6^y  ∧ 3^x =3(2^(y−1) )  2^x =3^y ....(i) ∧ 3^(x−1) =2^(y−1) ....(ii)  (i)×(ii):  2^(x+y−1) =3^(x+y−1)   ⇒x+y−1=0        x+y=1..................(iii)  (i)/(ii):  (2^x /2^(y−1) )=(3^y /3^(x−1) )  2^(x−y+1) =3^(y−x+1)   x−y+1=0 ∧ y−x+1=0  x−y+1=y−x+1  x−y=y−x  x=y..........................(iv)  (iii) & (iv):  x=y=1/2  Doesn′t satisfy original equation.  ∴ No solution.
2x+y=6y3x=3(2y1)2x=3y.(i)3x1=2y1.(ii)(i)×(ii):2x+y1=3x+y1x+y1=0x+y=1(iii)(i)/(ii):2x2y1=3y3x12xy+1=3yx+1xy+1=0yx+1=0xy+1=yx+1xy=yxx=y..(iv)(iii)&(iv):x=y=1/2Doesntsatisfyoriginalequation.Nosolution.
Commented by bemath last updated on 23/Mar/21
if x=y=(1/2)⇒2^(x+y) =2^((1/2)+(1/2)) = 2^1   RHS⇒6^y  = 6^(1/2) =(√6)  why 2≠(√6) sir?
ifx=y=122x+y=212+12=21RHS6y=612=6why26sir?
Commented by Rasheed.Sindhi last updated on 23/Mar/21
Yes madam, perhaps there′s no solution.
Yesmadam,perhapstheresnosolution.
Commented by mr W last updated on 23/Mar/21
3^a =2^b  ⇏ a=b=0    i think it′s wrong here:  2^(x−y+1) =3^(y−x+1)   ⇏x−y+1=0 ∧ y−x+1=0  ⇒x−y+1=(y−x+1)log_2  3  ⇒x−y=((log_2  3)/(1+log_2  3))
3a=2ba=b=0ithinkitswronghere:2xy+1=3yx+1xy+1=0yx+1=0xy+1=(yx+1)log23xy=log231+log23
Commented by Rasheed.Sindhi last updated on 23/Mar/21
Thαnks for guidline sir!
Thαnksforguidlinesir!
Answered by mr W last updated on 23/Mar/21
2^x 2^y =2^y 3^y   2^x =3^y   ⇒x=ylog_2  3=ky  with k=log_2  3  3^(x−1) =2^(y−1)   y−1=(x−1)log_2  3=(x−1)k  y−1=(ky−1)k  ⇒y=((1−k)/(1−k^2 ))=(1/(1+k))=(1/(1+log_2  3))≈0.386853  ⇒x=(k/(1+k))=(1/(1+(1/k)))=(1/(1+log_3  2))≈0.613147
2x2y=2y3y2x=3yx=ylog23=kywithk=log233x1=2y1y1=(x1)log23=(x1)ky1=(ky1)ky=1k1k2=11+k=11+log230.386853x=k1+k=11+1k=11+log320.613147

Leave a Reply

Your email address will not be published. Required fields are marked *