Menu Close

Question-136670




Question Number 136670 by rexford last updated on 24/Mar/21
Answered by Dwaipayan Shikari last updated on 24/Mar/21
0
$$\mathrm{0} \\ $$
Answered by MJS_new last updated on 24/Mar/21
ln x^x  =xln x ∀x>0  lim_(x→0^+ )  xln x =lim_(t→+∞) ((ln (1/t))/t) =−lim_(t→+∞)  ((ln t)/t) =  =−lim_(t→+∞)  (((d/dt)[ln t])/((d/dt)[t])) =−lim_(t→+∞)  ((1/t)/1) =0
$$\mathrm{ln}\:{x}^{{x}} \:={x}\mathrm{ln}\:{x}\:\forall{x}>\mathrm{0} \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:{x}\mathrm{ln}\:{x}\:=\underset{{t}\rightarrow+\infty} {\mathrm{lim}}\frac{\mathrm{ln}\:\frac{\mathrm{1}}{{t}}}{{t}}\:=−\underset{{t}\rightarrow+\infty} {\mathrm{lim}}\:\frac{\mathrm{ln}\:{t}}{{t}}\:= \\ $$$$=−\underset{{t}\rightarrow+\infty} {\mathrm{lim}}\:\frac{\frac{{d}}{{dt}}\left[\mathrm{ln}\:{t}\right]}{\frac{{d}}{{dt}}\left[{t}\right]}\:=−\underset{{t}\rightarrow+\infty} {\mathrm{lim}}\:\frac{\frac{\mathrm{1}}{{t}}}{\mathrm{1}}\:=\mathrm{0} \\ $$
Commented by rexford last updated on 24/Mar/21
thanks very much for your time
$${thanks}\:{very}\:{much}\:{for}\:{your}\:{time} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *