Menu Close

Question-136693




Question Number 136693 by liberty last updated on 25/Mar/21
Commented by Olaf last updated on 25/Mar/21
f(x) = mx^3 +5x^2 +kx−18  = (6−x−x^2 )(−mx−3)  =(x^2 +x−6)(mx+3)  = mx^3 +(3+m)x^2 +(3−6m)x−18  By identification :   { ((3+m = 5      (1))),((3−6m = k  (2))) :}  (1) : m = 2  (2) : k = 3−6m = −9  then f(x) = 2x^3 +5x^2 −9x−18  = (6−x−x^2 )(−2x−3)
f(x)=mx3+5x2+kx18=(6xx2)(mx3)=(x2+x6)(mx+3)=mx3+(3+m)x2+(36m)x18Byidentification:{3+m=5(1)36m=k(2)(1):m=2(2):k=36m=9thenf(x)=2x3+5x29x18=(6xx2)(2x3)
Answered by Rasheed.Sindhi last updated on 25/Mar/21
6−x−x^2 =−(x+3)(x−2)  ∴ x+3 & x−2 are also factors of f(x)  By synthetic division   determinant (((2)),m,5,k,(−18)),(,,(2m),(4m+10),(8m+2k+20)),((−3)),m,(2m+5),(4m+k+10),(8m+2k+2=0_(4m+k=−1) )),(,,(−3m),(3m−15),),(,m,(−m+5),(7m+k−5=0),))  4m+k=−1  7m+k=5  3m=6⇒m=2  k=5−7m=5−7(2)=−9
6xx2=(x+3)(x2)x+3&x2arealsofactorsoff(x)Bysyntheticdivision2)m5k182m4m+108m+2k+203)m2m+54m+k+108m+2k+2=04m+k=13m3m15mm+57m+k5=04m+k=17m+k=53m=6m=2k=57m=57(2)=9
Answered by bramlexs22 last updated on 25/Mar/21
method(1)  by Remainder theorem  consider 6−x−x^2  = 0  or x^2 +x−6=0 we get  (x+3)(x−2)=0⇒x=−3, 2  since 6−x−x^2  is a factor of  polynomes f(x) so f(−3) and  f(2) is zeros to f(x).  f(2)=8m+20+2k−18=0  8m+2k=−2→4m+k=−1...(i)    f(−3)=−27m+45−3k−18=0  −27m−3k=−27→9m+k=9...(ii)  eliminate (i)&(ii) gives  5m = 10   { ((m=2)),((k=−9)) :}
method(1)byRemaindertheoremconsider6xx2=0orx2+x6=0weget(x+3)(x2)=0x=3,2since6xx2isafactorofpolynomesf(x)sof(3)andf(2)iszerostof(x).f(2)=8m+20+2k18=08m+2k=24m+k=1(i)f(3)=27m+453k18=027m3k=279m+k=9(ii)eliminate(i)&(ii)gives5m=10{m=2k=9

Leave a Reply

Your email address will not be published. Required fields are marked *