Menu Close

Question-136885




Question Number 136885 by BHOOPENDRA last updated on 27/Mar/21
Answered by bramlexs22 last updated on 27/Mar/21
λ^3 −(trace A)λ^2 +  (((minor of the terms)),((on the leading diag A )) )λ−det(A)=0  λ^3 −3λ^2 +( determinant (((1  2)),((2  1)))+ determinant (((1   0)),((1   1)))+ determinant (((  1     2)),((−1   1))))λ−3 =0  λ^3 −3λ^2 +λ−3 = 0  by Caley−Hamilton teorem  A^3 −3A^2 +A−3I=0  multiply by A^(−1)     A^2 −3A+I−3A^(−1) =0   3A^(−1)  = A^2 −3A+I   3A^(−1) = A(A−3I)+I   3A^(−1) =  (((−4     −2     4)),((   3         0     −2)),((−3        0       2)) ) +  (((1   0   0)),((0   1   0)),((0   0   1)) )   3A^(−1) =  (((−3     −2       4)),((  3          1       −2)),((−3       0          3)) )   A^(−1) = (1/3) (((−3     −2       4)),((    3         1      −2)),((−3        0          3)) )
λ3(traceA)λ2+(minorofthetermsontheleadingdiagA)λdet(A)=0λ33λ2+(|1221|+|1011|+|1211|)λ3=0λ33λ2+λ3=0byCaleyHamiltonteoremA33A2+A3I=0multiplybyA1A23A+I3A1=03A1=A23A+I3A1=A(A3I)+I3A1=(424302302)+(100010001)3A1=(324312303)A1=13(324312303)
Commented by BHOOPENDRA last updated on 27/Mar/21
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *