Question Number 136984 by mr W last updated on 28/Mar/21
Commented by mr W last updated on 28/Mar/21
$${see}\:{Q}\mathrm{136382} \\ $$
Commented by mr W last updated on 30/Mar/21
$${r}=\left({b}−{y}\right)\mathrm{tan}\:\gamma \\ $$$${dx}={rd}\theta \\ $$$${dy}=\mathrm{tan}\:\phi\:{dx} \\ $$$${dz}={dr}=−\mathrm{tan}\:\gamma\:{dy}=−\mathrm{tan}\:\gamma\:\mathrm{tan}\:\phi\:{dx} \\ $$$${dz}=−\mathrm{tan}\:\gamma\:\mathrm{tan}\:\phi\:{rd}\theta \\ $$$$\omega=\frac{{d}\theta}{{dt}} \\ $$$${I}=\frac{\mathrm{3}{Ma}^{\mathrm{2}} }{\mathrm{10}} \\ $$$${E}=\frac{\mathrm{1}}{\mathrm{2}}{I}\omega^{\mathrm{2}} \\ $$$${dE}=−{Mgdz}={Mg}\mathrm{tan}\:\gamma\:\mathrm{tan}\:\phi\:{rd}\theta \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{3}{Ma}^{\mathrm{2}} }{\mathrm{10}}×\mathrm{2}\omega\frac{{d}\omega}{{dt}}={Mg}\mathrm{tan}\:\gamma\:\mathrm{tan}\:\phi\:{r}\frac{{d}\theta}{{dt}} \\ $$$$\frac{{d}\omega}{{dt}}=\alpha=\frac{\mathrm{10}{g}\:\mathrm{tan}\:\phi\:}{\mathrm{3}{ab}}×{r}=\lambda{r} \\ $$$${with}\:\lambda=\frac{\mathrm{10}{g}\:\mathrm{tan}\:\phi\:}{\mathrm{3}{ab}} \\ $$$${v}_{{x}} ={r}\omega \\ $$$${a}_{{x}} =\frac{{dv}_{{x}} }{{dt}}=\omega\frac{{dr}}{{dt}}+{r}\frac{{d}\omega}{{dt}} \\ $$$$\:\:\:\:=−{r}\omega^{\mathrm{2}} \mathrm{tan}\:\phi\:\mathrm{tan}\:\gamma+\lambda{r}^{\mathrm{2}} \\ $$$${at}\:{t}=\mathrm{0}:\:\omega=\mathrm{0} \\ $$$$\Rightarrow{a}_{{x}} =\lambda{r}^{\mathrm{2}} =\frac{\mathrm{10}{g}\:\mathrm{tan}\:\phi\:{r}^{\mathrm{2}} \:}{\mathrm{3}{ab}} \\ $$$${with}\:{r}=\left({b}−{x}\:\mathrm{tan}\:\phi\right)\frac{{a}}{{b}} \\ $$$$=================== \\ $$$$\omega\frac{{d}\omega}{{d}\theta}=\lambda{r} \\ $$$$\omega{d}\omega=\lambda{dx} \\ $$$$\frac{\omega^{\mathrm{2}} }{\mathrm{2}}=\lambda\left({x}−{x}_{\mathrm{0}} \right) \\ $$$$\omega=\frac{{dx}}{{rdt}}=\sqrt{\mathrm{2}\lambda\left({x}−{x}_{\mathrm{0}} \right)} \\ $$$$\frac{{dx}}{\left({b}−{x}\:\mathrm{tan}\:\phi\right)\mathrm{tan}\:\gamma\:{dt}}=\sqrt{\mathrm{2}\lambda\left({x}−{x}_{\mathrm{0}} \right)} \\ $$$$\frac{{dx}}{\:\sqrt{\mathrm{2}\lambda}\:\mathrm{tan}\:\phi\:\mathrm{tan}\:\gamma\left(\frac{{b}}{\mathrm{tan}\:\phi}−{x}\right)\sqrt{{x}−{x}_{\mathrm{0}} }}={dt} \\ $$$$\Rightarrow{t}=\frac{\mathrm{1}}{\:\frac{\mathrm{2}\:\mathrm{tan}\:\phi}{{b}}\sqrt{\frac{\mathrm{5}{ga}\:\mathrm{tan}\:\phi\:}{\mathrm{3}{b}}}}\int_{{x}_{\mathrm{0}} } ^{{x}} \frac{{dx}}{\:\left(\frac{{b}}{\mathrm{tan}\:\phi}−{x}\right)\sqrt{{x}−{x}_{\mathrm{0}} }} \\ $$$$\Rightarrow{t}=\frac{\mathrm{1}}{\:\frac{\mathrm{2}\:\mathrm{tan}\:\phi}{{b}}\sqrt{\frac{\mathrm{5}{ag}}{\mathrm{3}}\left(\mathrm{1}−\frac{{x}_{\mathrm{0}} \:\mathrm{tan}\:\phi}{{b}}\right)}}\:\mathrm{ln}\:\frac{\sqrt{\frac{{b}}{\mathrm{tan}\:\phi}−{x}_{\mathrm{0}} }+\sqrt{{x}−{x}_{\mathrm{0}} }}{\:\sqrt{\frac{{b}}{\mathrm{tan}\:\phi}−{x}_{\mathrm{0}} }−\sqrt{{x}−{x}_{\mathrm{0}} }} \\ $$$$\Rightarrow{t}=\frac{\mathrm{1}}{\:\mathrm{2}\sqrt{\frac{\mathrm{5}{g}\:\mathrm{tan}\:\gamma\:\mathrm{tan}\:\phi}{\mathrm{3}{x}_{{m}} }}}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\xi_{\mathrm{0}} }}\:\mathrm{ln}\:\frac{\sqrt{\mathrm{1}−\xi_{\mathrm{0}} }+\sqrt{\xi−\xi_{\mathrm{0}} }}{\:\sqrt{\mathrm{1}−\xi_{\mathrm{0}} }−\sqrt{\xi−\xi_{\mathrm{0}} }} \\ $$$$\Rightarrow{t}=\sqrt{\frac{\mathrm{3}{x}_{{m}} }{\mathrm{20}{g}\:\mathrm{tan}\:\phi\:\mathrm{tan}\:\gamma}}\:\Phi \\ $$$$\Rightarrow\Phi=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\xi_{\mathrm{0}} }}\:\mathrm{ln}\:\frac{\sqrt{\mathrm{1}−\xi_{\mathrm{0}} }+\sqrt{\xi−\xi_{\mathrm{0}} }}{\:\sqrt{\mathrm{1}−\xi_{\mathrm{0}} }−\sqrt{\xi−\xi_{\mathrm{0}} }} \\ $$$${x}_{{m}} =\frac{{b}}{\mathrm{tan}\:\phi} \\ $$$$\xi=\frac{{x}}{{x}_{{m}} },\:\xi_{\mathrm{0}} =\frac{{x}_{\mathrm{0}} }{{x}_{{m}} } \\ $$
Commented by ajfour last updated on 29/Mar/21
$${Superb}\:{solution}\:{sir}.\:{Thanks}. \\ $$
Commented by mr W last updated on 30/Mar/21