Question-137206 Tinku Tara June 3, 2023 Arithmetic 0 Comments FacebookTweetPin Question Number 137206 by JulioCesar last updated on 31/Mar/21 Answered by bemath last updated on 31/Mar/21 byparts{u=ln(x−1x+1)du=2(x−1)(x+1)dxv=xI=xln(x−1x+1)−∫2x(x−1)(x+1)dxI=xln(x−1x+1)−[∫1x−1dx+∫1x+1dx]I=xln(x−1x+1)−ln(x2−1)+CI=(x−1)ln(x−1)+(1−x)ln(x+1)+C Answered by Ñï= last updated on 31/Mar/21 ∫lnx−1x+1dx=∫ln(x−1)dx−∫ln(x+1)dx=(x−1)ln(x−1)−(x−1)−(x+1)ln(x+1)+(x+1)+C=(x−1)ln(x−1)−(x+1)ln(x+1)+C Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Evaluate-the-integral-of-x-x-3-2-x-5-2-4-x-7-2-4-6-1-x-2-2-2-x-4-2-2-4-2-x-6-2-2-4-2-6-2-dx-for-0-lt-x-lt-The-answer-is-saying-Next Next post: Of-all-rectangular-boxes-without-a-lid-and-having-a-given-surface-area-Find-the-one-with-maximum-volume- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.