Menu Close

Question-137206




Question Number 137206 by JulioCesar last updated on 31/Mar/21
Answered by bemath last updated on 31/Mar/21
by parts  { ((u=ln (((x−1)/(x+1)))  du=(2/((x−1)(x+1)))dx)),((v = x)) :}  I = x ln (((x−1)/(x+1)))−∫ ((2x)/((x−1)(x+1)))dx  I=x ln (((x−1)/(x+1)))−[∫ (1/(x−1))dx+∫ (1/(x+1))dx ]  I= x ln (((x−1)/(x+1)))−ln (x^2 −1) + C  I = (x−1)ln (x−1)+(1−x)ln (x+1) + C
byparts{u=ln(x1x+1)du=2(x1)(x+1)dxv=xI=xln(x1x+1)2x(x1)(x+1)dxI=xln(x1x+1)[1x1dx+1x+1dx]I=xln(x1x+1)ln(x21)+CI=(x1)ln(x1)+(1x)ln(x+1)+C
Answered by Ñï= last updated on 31/Mar/21
∫ln((x−1)/(x+1))dx=∫ln(x−1)dx−∫ln(x+1)dx  =(x−1)ln(x−1)−(x−1)−(x+1)ln(x+1)+(x+1)+C  =(x−1)ln(x−1)−(x+1)ln(x+1)+C
lnx1x+1dx=ln(x1)dxln(x+1)dx=(x1)ln(x1)(x1)(x+1)ln(x+1)+(x+1)+C=(x1)ln(x1)(x+1)ln(x+1)+C

Leave a Reply

Your email address will not be published. Required fields are marked *