Menu Close

Question-137461




Question Number 137461 by mathlove last updated on 03/Apr/21
Answered by Ñï= last updated on 03/Apr/21
∫((1+x^2 )/(2x+x^3 ))dx=(1/3)∫((2+3x^2 +1)/(2x+x^3 ))dx=(1/3)ln∣2x+x^3 ∣+(1/3)∫(dx/(x(2+x^2 )))  =(1/3)ln∣2x+x^3 ∣+(1/6)∫((1/x)−(x/(2+x^2 )))=(1/3)ln∣2x+x^3 ∣+(1/6)ln∣x∣−(1/(12))ln∣2+x^2 ∣+C
1+x22x+x3dx=132+3x2+12x+x3dx=13ln2x+x3+13dxx(2+x2)=13ln2x+x3+16(1xx2+x2)=13ln2x+x3+16lnx112ln2+x2+C
Answered by MJS_new last updated on 03/Apr/21
∫((x^2 +1)/(x(x^2 +2)))dx=(1/2)∫(dx/x)+(1/2)∫(x/(x^2 +2))=  =(1/2)ln ∣x∣ +(1/4)ln (x^2 +2) +C
x2+1x(x2+2)dx=12dxx+12xx2+2==12lnx+14ln(x2+2)+C
Answered by liberty last updated on 04/Apr/21
∫ ((x^2 +1)/(x(2+x^2 ))) dx = ∫ (x/(2+x^2 ))dx+∫(1/(x(2+x^2 )))dx  =(1/2)∫ ((d(2+x^2 ))/(2+x^2 ))+∫(((√2) sec^2 t)/( (√2) tan t(2sec^2 t)))dt   [ x=(√2) tan t ]  I=(1/2)ln (2+x^2 )+(1/2)∫((cos t)/(sin t)) dt  I=(1/2)ln (2+x^2 )+(1/2)ln (sin t)+c  I=(1/2)ln (2+x^2 )+(1/2)ln (((∣x∣)/( (√(2+x^2 )))))+c
x2+1x(2+x2)dx=x2+x2dx+1x(2+x2)dx=12d(2+x2)2+x2+2sec2t2tant(2sec2t)dt[x=2tant]I=12ln(2+x2)+12costsintdtI=12ln(2+x2)+12ln(sint)+cI=12ln(2+x2)+12ln(x2+x2)+c
Commented by MJS_new last updated on 04/Apr/21
(1/2)ln a +(1/2)ln (b/( (√a))) =(1/2)ln a +(1/2)ln b −(1/2)ln (√a) =  =(1/2)ln a +(1/2)ln b −(1/4)ln a =(1/4)ln a +(1/2)ln b
12lna+12lnba=12lna+12lnb12lna==12lna+12lnb14lna=14lna+12lnb

Leave a Reply

Your email address will not be published. Required fields are marked *