Menu Close

Question-137770




Question Number 137770 by peter frank last updated on 06/Apr/21
Answered by Ñï= last updated on 06/Apr/21
I=∫_0 ^1 ((ln(1+x))/(1+x^2 ))dx=∫_0 ^1 da∫_0 ^1 (x/((1+ax)(1+x^2 )))dx  =∫_0 ^1 (1/(1+a^2 ))da∫_0 ^1 (((−a)/(1+ax))+((x+a)/(1+x^2 )))dx  =∫_0 ^1 (1/(1+a^2 ))da(−ln(1+ax)+(1/2)ln(1+x^2 )+atan^(−1) x)_0 ^1   =∫_0 ^1 (1/(1+a^2 ))(−ln(1+a)+(1/2)ln2+(π/4)a)da  =(π/4)ln2−I  ⇒I=(π/8)ln2
$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} {da}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}}{\left(\mathrm{1}+{ax}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{a}^{\mathrm{2}} }{da}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{−{a}}{\mathrm{1}+{ax}}+\frac{{x}+{a}}{\mathrm{1}+{x}^{\mathrm{2}} }\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{a}^{\mathrm{2}} }{da}\left(−{ln}\left(\mathrm{1}+{ax}\right)+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)+{a}\mathrm{tan}^{−\mathrm{1}} {x}\right)_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{a}^{\mathrm{2}} }\left(−{ln}\left(\mathrm{1}+{a}\right)+\frac{\mathrm{1}}{\mathrm{2}}{ln}\mathrm{2}+\frac{\pi}{\mathrm{4}}{a}\right){da} \\ $$$$=\frac{\pi}{\mathrm{4}}{ln}\mathrm{2}−{I} \\ $$$$\Rightarrow{I}=\frac{\pi}{\mathrm{8}}{ln}\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *