Question Number 137772 by peter frank last updated on 06/Apr/21
Answered by bemath last updated on 06/Apr/21
$$\Leftrightarrow\:\frac{\left(\mathrm{2}^{{n}} \right)^{\mathrm{3}} +\left(\mathrm{3}^{{n}} \right)^{\mathrm{3}} }{\left(\mathrm{2}^{{n}} \right)^{\mathrm{2}} \left(\mathrm{3}\right)^{{n}} +\mathrm{2}^{{n}} .\left(\mathrm{3}^{{n}} \right)^{\mathrm{2}} }\:=\:\frac{\mathrm{7}}{\mathrm{6}} \\ $$$${let}\: \begin{cases}{\mathrm{2}^{{n}} ={u}}\\{\mathrm{3}^{{n}} ={v}}\end{cases} \\ $$$$\Leftrightarrow\:\frac{{u}^{\mathrm{3}} +{v}^{\mathrm{3}} }{{u}^{\mathrm{2}} {v}+{uv}^{\mathrm{2}} }\:=\:\frac{\mathrm{7}}{\mathrm{6}}\: \\ $$$$\Leftrightarrow\:\mathrm{6}{u}^{\mathrm{3}} +\mathrm{6}{v}^{\mathrm{3}} \:=\:\mathrm{7}{u}^{\mathrm{2}} {v}+\mathrm{7}{uv}^{\mathrm{2}} \\ $$$$\Rightarrow{u}^{\mathrm{2}} \left(\mathrm{6}{u}−\mathrm{7}{v}\right)={v}^{\mathrm{2}} \left(\mathrm{7}{u}−\mathrm{6}{v}\right) \\ $$$$\Rightarrow\frac{{u}^{\mathrm{2}} }{{v}^{\mathrm{2}} }\:=\:\frac{\mathrm{7}{u}−\mathrm{6}{v}}{\mathrm{6}{u}−\mathrm{7}{u}}\:=\frac{\mathrm{7}\left(\frac{{u}}{{v}}\right)−\mathrm{6}}{\mathrm{6}\left(\frac{{u}}{{v}}\right)−\mathrm{7}} \\ $$$${let}\:\frac{{u}}{{v}}\:=\ell\:\Rightarrow\ell^{\mathrm{2}} \:=\:\frac{\mathrm{7}\ell−\mathrm{6}}{\mathrm{6}\ell−\mathrm{7}} \\ $$$$\Leftrightarrow\:\mathrm{6}\ell^{\mathrm{3}} −\mathrm{7}\ell^{\mathrm{2}} −\mathrm{7}\ell+\mathrm{6}=\mathrm{0} \\ $$$$\left(\ell+\mathrm{1}\right)\left(\mathrm{6}\ell^{\mathrm{2}} −\mathrm{13}\ell+\mathrm{6}\right)=\mathrm{0} \\ $$$$\ell=−\mathrm{1}\: {rejected} \\ $$$$ \left(\ell−\frac{\mathrm{3}}{\mathrm{2}}\right)\left(\ell−\frac{\mathrm{2}}{\mathrm{3}}\right)=\mathrm{0} \\ $$$${now}\:{it}\:{easy}\:{to}\:{solve} \\ $$$${n}=\mathrm{1}\:{or}\:{n}=−\mathrm{1} \\ $$
Answered by Rasheed.Sindhi last updated on 07/Apr/21
$$\frac{\left(\mathrm{2}^{\mathrm{3}} \right)^{{n}} +\left(\mathrm{3}^{\mathrm{3}} \right)^{{n}} }{\mathrm{6}^{{n}} \left(\mathrm{2}^{{n}} +\mathrm{3}^{{n}} \right)}=\frac{\mathrm{7}}{\mathrm{6}} \\ $$$$\frac{\left(\mathrm{2}^{{n}} \right)^{\mathrm{3}} +\left(\mathrm{3}^{{n}} \right)^{\mathrm{3}} }{\mathrm{6}^{{n}} \left(\mathrm{2}^{{n}} +\mathrm{3}^{{n}} \right)}=\frac{\mathrm{7}}{\mathrm{6}} \\ $$$$\frac{\left(\mathrm{2}^{{n}} +\mathrm{3}^{{n}} \right)\left(\mathrm{2}^{\mathrm{2}{n}} −\mathrm{2}^{{n}} \mathrm{3}^{{n}} +\mathrm{3}^{\mathrm{2}{n}} \right)}{\mathrm{6}^{{n}} \left(\mathrm{2}^{{n}} +\mathrm{3}^{{n}} \right)}=\frac{\mathrm{7}}{\mathrm{6}} \\ $$$$\mathrm{6}.\mathrm{2}^{\mathrm{2}{n}} −\mathrm{6}.\mathrm{2}^{{n}} \mathrm{3}^{{n}} +\mathrm{6}.\mathrm{3}^{\mathrm{2}{n}} =\mathrm{7}.\mathrm{6}^{{n}} \\ $$$$\mathrm{6}.\mathrm{2}^{\mathrm{2}{n}} −\mathrm{13}.\mathrm{2}^{{n}} .\mathrm{3}^{{n}} +\mathrm{6}.\mathrm{3}^{\mathrm{2}{n}} =\mathrm{0} \\ $$$${Let}\:\mathrm{2}^{{n}} ={x}\:\&\:\mathrm{3}^{{n}} ={y} \\ $$$$\:\:\:\mathrm{6}{x}^{\mathrm{2}} −\mathrm{13}{xy}+\mathrm{6}{y}^{\mathrm{2}} \\ $$$$\:\:\left(\mathrm{3}{x}−\mathrm{2}{y}\right)\left(\mathrm{2}{x}−\mathrm{3}{y}\right)=\mathrm{0} \\ $$$$\:\:\mathrm{3}{x}=\mathrm{2}{y}\:\mid\:\mathrm{2}{x}=\mathrm{3}{y} \\ $$$$\:\:\frac{{x}}{{y}}=\frac{\mathrm{2}}{\mathrm{3}}\:\:\:\mid\:\:\frac{{x}}{{y}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\:\frac{\mathrm{2}^{{n}} }{\mathrm{3}^{{n}} }=\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{1}} \:\mid\:\frac{\mathrm{2}^{{n}} }{\mathrm{3}^{{n}} }=\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{−\mathrm{1}} \\ $$$$\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{n}} =\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{1}} \:\:\mid\:\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{n}} =\frac{\mathrm{3}}{\mathrm{2}}=\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{−\mathrm{1}} \\ $$$${n}=\mathrm{1}\:\:\mid\:\:\:{n}=−\mathrm{1} \\ $$