Menu Close

Question-138580




Question Number 138580 by Bekzod Jumayev last updated on 15/Apr/21
Commented by Bekzod Jumayev last updated on 15/Apr/21
Please help?
$${Please}\:{help}? \\ $$$$ \\ $$
Answered by Ar Brandon last updated on 15/Apr/21
∫_a ^b f(x)dx=∫_a ^b f(a+b−x)dx  ∫_(−π) ^π ((sin(2021x))/((1+3^x )sinx))dx=∫_(−π) ^π ((sin(2021x))/((1+3^(−x) )sinx))dx=∫_(−π) ^π ((3^x sin(2021x))/((1+3^x )sinx))dx  =(1/2)∫_(−π) ^π (((1+3^x )sin(2021x))/((1+3^x )sinx))dx=(1/2)∫_(−π) ^π ((sin(2021x))/(sinx))dx  =∫_0 ^π ((sin(2021x))/(sinx))dx
$$\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{a}+\mathrm{b}−\mathrm{x}\right)\mathrm{dx} \\ $$$$\int_{−\pi} ^{\pi} \frac{\mathrm{sin}\left(\mathrm{2021x}\right)}{\left(\mathrm{1}+\mathrm{3}^{\mathrm{x}} \right)\mathrm{sinx}}\mathrm{dx}=\int_{−\pi} ^{\pi} \frac{\mathrm{sin}\left(\mathrm{2021x}\right)}{\left(\mathrm{1}+\mathrm{3}^{−\mathrm{x}} \right)\mathrm{sinx}}\mathrm{dx}=\int_{−\pi} ^{\pi} \frac{\mathrm{3}^{\mathrm{x}} \mathrm{sin}\left(\mathrm{2021x}\right)}{\left(\mathrm{1}+\mathrm{3}^{\mathrm{x}} \right)\mathrm{sinx}}\mathrm{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{−\pi} ^{\pi} \frac{\left(\mathrm{1}+\mathrm{3}^{\mathrm{x}} \right)\mathrm{sin}\left(\mathrm{2021x}\right)}{\left(\mathrm{1}+\mathrm{3}^{\mathrm{x}} \right)\mathrm{sinx}}\mathrm{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{−\pi} ^{\pi} \frac{\mathrm{sin}\left(\mathrm{2021x}\right)}{\mathrm{sinx}}\mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{sin}\left(\mathrm{2021x}\right)}{\mathrm{sinx}}\mathrm{dx} \\ $$
Answered by phanphuoc last updated on 15/Apr/21
I=∫_(−π) ^π 3^x sin(2021x)dx/(1+3^x )sinx with x=−u  2I=∫_(−π) ^π sin(2021x)dx/sinx
$${I}=\int_{−\pi} ^{\pi} \mathrm{3}^{{x}} {sin}\left(\mathrm{2021}{x}\right){dx}/\left(\mathrm{1}+\mathrm{3}^{{x}} \right){sinx}\:{with}\:{x}=−{u} \\ $$$$\mathrm{2}{I}=\int_{−\pi} ^{\pi} {sin}\left(\mathrm{2021}{x}\right){dx}/{sinx} \\ $$
Answered by mnjuly1970 last updated on 15/Apr/21
 𝛗_n =∫_0 ^( π) ((sin(nx))/(sin(x))) ........(∗)   𝛗_(n−2) =∫_0 ^( π) ((sin((n−2)x))/(sin(x)))dx    𝛗_n −𝛗_(n−2) =∫_0 ^( π) ((2cos(((nx+nx−2x)/2))sin(((2x)/2)))/(sin(x)))dx               =∫_0 ^( π) ((cos((n−1)x).sin(x))/(sin(x)))dx           =(1/(n−1))∫_0 ^( π) cos((n−1)x) dx=0    𝛗_n =𝛗_(n−2)  ......✓    (∗)......::  𝛗_0 =0 , 𝛗_1 =π ,𝛗_2 =0 (✓)..        𝛗_n = { (( 0      if ;  n:=even)),(( π      if ;  n:= odd  )) :}        ..........   ∴    𝛗_(2021) = π   ..........
$$\:\boldsymbol{\phi}_{{n}} =\int_{\mathrm{0}} ^{\:\pi} \frac{{sin}\left({nx}\right)}{{sin}\left({x}\right)}\:……..\left(\ast\right) \\ $$$$\:\boldsymbol{\phi}_{{n}−\mathrm{2}} =\int_{\mathrm{0}} ^{\:\pi} \frac{{sin}\left(\left({n}−\mathrm{2}\right){x}\right)}{{sin}\left({x}\right)}{dx} \\ $$$$\:\:\boldsymbol{\phi}_{{n}} −\boldsymbol{\phi}_{{n}−\mathrm{2}} =\int_{\mathrm{0}} ^{\:\pi} \frac{\mathrm{2}{cos}\left(\frac{{nx}+{nx}−\mathrm{2}{x}}{\mathrm{2}}\right){sin}\left(\frac{\mathrm{2}{x}}{\mathrm{2}}\right)}{{sin}\left({x}\right)}{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\int_{\mathrm{0}} ^{\:\pi} \frac{{cos}\left(\left({n}−\mathrm{1}\right){x}\right).{sin}\left({x}\right)}{{sin}\left({x}\right)}{dx} \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{{n}−\mathrm{1}}\int_{\mathrm{0}} ^{\:\pi} {cos}\left(\left({n}−\mathrm{1}\right){x}\right)\:{dx}=\mathrm{0} \\ $$$$\:\:\boldsymbol{\phi}_{{n}} =\boldsymbol{\phi}_{{n}−\mathrm{2}} \:……\checkmark \\ $$$$\:\:\left(\ast\right)……::\:\:\boldsymbol{\phi}_{\mathrm{0}} =\mathrm{0}\:,\:\boldsymbol{\phi}_{\mathrm{1}} =\pi\:,\boldsymbol{\phi}_{\mathrm{2}} =\mathrm{0}\:\left(\checkmark\right).. \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}_{{n}} =\begin{cases}{\:\mathrm{0}\:\:\:\:\:\:{if}\:;\:\:{n}:={even}}\\{\:\pi\:\:\:\:\:\:{if}\:;\:\:{n}:=\:{odd}\:\:}\end{cases} \\ $$$$\:\:\:\:\:\:……….\:\:\:\therefore\:\:\:\:\boldsymbol{\phi}_{\mathrm{2021}} =\:\pi\:\:\:………. \\ $$$$\:\:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *