Menu Close

Question-138580




Question Number 138580 by Bekzod Jumayev last updated on 15/Apr/21
Commented by Bekzod Jumayev last updated on 15/Apr/21
Please help?
Pleasehelp?
Answered by Ar Brandon last updated on 15/Apr/21
∫_a ^b f(x)dx=∫_a ^b f(a+b−x)dx  ∫_(−π) ^π ((sin(2021x))/((1+3^x )sinx))dx=∫_(−π) ^π ((sin(2021x))/((1+3^(−x) )sinx))dx=∫_(−π) ^π ((3^x sin(2021x))/((1+3^x )sinx))dx  =(1/2)∫_(−π) ^π (((1+3^x )sin(2021x))/((1+3^x )sinx))dx=(1/2)∫_(−π) ^π ((sin(2021x))/(sinx))dx  =∫_0 ^π ((sin(2021x))/(sinx))dx
abf(x)dx=abf(a+bx)dxππsin(2021x)(1+3x)sinxdx=ππsin(2021x)(1+3x)sinxdx=ππ3xsin(2021x)(1+3x)sinxdx=12ππ(1+3x)sin(2021x)(1+3x)sinxdx=12ππsin(2021x)sinxdx=0πsin(2021x)sinxdx
Answered by phanphuoc last updated on 15/Apr/21
I=∫_(−π) ^π 3^x sin(2021x)dx/(1+3^x )sinx with x=−u  2I=∫_(−π) ^π sin(2021x)dx/sinx
I=ππ3xsin(2021x)dx/(1+3x)sinxwithx=u2I=ππsin(2021x)dx/sinx
Answered by mnjuly1970 last updated on 15/Apr/21
 𝛗_n =∫_0 ^( π) ((sin(nx))/(sin(x))) ........(∗)   𝛗_(n−2) =∫_0 ^( π) ((sin((n−2)x))/(sin(x)))dx    𝛗_n −𝛗_(n−2) =∫_0 ^( π) ((2cos(((nx+nx−2x)/2))sin(((2x)/2)))/(sin(x)))dx               =∫_0 ^( π) ((cos((n−1)x).sin(x))/(sin(x)))dx           =(1/(n−1))∫_0 ^( π) cos((n−1)x) dx=0    𝛗_n =𝛗_(n−2)  ......✓    (∗)......::  𝛗_0 =0 , 𝛗_1 =π ,𝛗_2 =0 (✓)..        𝛗_n = { (( 0      if ;  n:=even)),(( π      if ;  n:= odd  )) :}        ..........   ∴    𝛗_(2021) = π   ..........
ϕn=0πsin(nx)sin(x)..()ϕn2=0πsin((n2)x)sin(x)dxϕnϕn2=0π2cos(nx+nx2x2)sin(2x2)sin(x)dx=0πcos((n1)x).sin(x)sin(x)dx=1n10πcos((n1)x)dx=0ϕn=ϕn2()::ϕ0=0,ϕ1=π,ϕ2=0()..ϕn={0if;n:=evenπif;n:=odd.ϕ2021=π.

Leave a Reply

Your email address will not be published. Required fields are marked *