Menu Close

Question-138896




Question Number 138896 by ajfour last updated on 19/Apr/21
Answered by ajfour last updated on 20/Apr/21
Let A be origin and x axis  vertically down towards center  of cube.  −dg_x =(((Gdm)x)/((x^2 +y^2 +z^2 )^(3/2) ))  −dg_x =(((ρG)xdxdydz)/((x^2 +y^2 +z^2 )^(3/2) ))  x∈[0,2a]  ;  y∈[−a,a] ;  z∈[−a,a]  −(g_x /(ρG))=∫dz∫dy{(1/( (√(y^2 +z^2 ))))−(1/( (√(4a^2 +y^2 +z^2 ))))}  =∫_(−a) ^(  a) {ln (((a+(√(a^2 +z^2 )))/(−a+(√(a^2 +z^2 )))))−ln( ((a+(√(5a^2 +z^2 )))/(−a+(√(5a^2 +z^2 )))))}dz  ρ=(M/(8a^3 ))   &   g_0 =−((GM)/R^2 )=−((ρG(8a^3 ))/((((6a^3 )/π))^(2/3) ))   as    (4/3)πR^3 =8a^3    ⇒     g_0 =−((ρG(8a))/(((6/π))^(2/3) ))  ⇒ −ρG=(g_0 /(8a))((6/π))^(2/3)   −ρG=((3g_0 )/(4πR))    as  a=R((π/6))^(1/3)   ⇒  ((g_x (4πR))/(3g_0 ))=∫_(−a) ^(  a) {ln (((a+(√(a^2 +z^2 )))/(−a+(√(a^2 +z^2 )))))−ln( ((a+(√(5a^2 +z^2 )))/(−a+(√(5a^2 +z^2 )))))}dz  let   (z/a)=t  ⇒  dz=adt  for z=a,  t=1  &  z=−a, t=−1  so  (g_x /g_0 )=((3a)/(4πR))∫_(−1) ^( 1) {ln (((1+(√(1+t^2 )))/(−1+(√(1+t^2 )))))−ln (((1+(√(5+t^2 )))/(−1+(√(5+t^2 )))))}dt  (g_x /g_0 )=(1/8)((6/π))^(2/3) ( I_0  )
LetAbeoriginandxaxisverticallydowntowardscenterofcube.dgx=(Gdm)x(x2+y2+z2)3/2dgx=(ρG)xdxdydz(x2+y2+z2)3/2x[0,2a];y[a,a];z[a,a]gxρG=dzdy{1y2+z214a2+y2+z2}=aa{ln(a+a2+z2a+a2+z2)ln(a+5a2+z2a+5a2+z2)}dzρ=M8a3&g0=GMR2=ρG(8a3)(6a3π)2/3as43πR3=8a3g0=ρG(8a)(6π)2/3ρG=g08a(6π)2/3ρG=3g04πRasa=R(π6)1/3gx(4πR)3g0=aa{ln(a+a2+z2a+a2+z2)ln(a+5a2+z2a+5a2+z2)}dzletza=tdz=adtforz=a,t=1&z=a,t=1sogxg0=3a4πR11{ln(1+1+t21+1+t2)ln(1+5+t21+5+t2)}dtgxg0=18(6π)2/3(I0)
Commented by mr W last updated on 20/Apr/21
I_0 =∫_(−1) ^( 1) {ln (((1+(√(1+t^2 )))/(−1+(√(1+t^2 )))))−ln (((1+(√(5+t^2 )))/(−1+(√(5+t^2 )))))}dt       ≈5.193793  g_x =ρGI_0 a  g_0 =((GM)/R^2 )=(G/R^2 )×((ρ4πR^3 )/3)=((4ρGπR)/3)  8a^3 =((4πR^3 )/3) ⇒(a/R)=((π/6))^(1/3)   (g_x /g_0 )=((3I_0 a)/(4πR))=(I_0 /8)×((6a)/(πR))=(I_0 /8)((6/π))^(2/3) ≈0.999376
I0=11{ln(1+1+t21+1+t2)ln(1+5+t21+5+t2)}dt5.193793gx=ρGI0ag0=GMR2=GR2×ρ4πR33=4ρGπR38a3=4πR33aR=(π6)13gxg0=3I0a4πR=I08×6aπR=I08(6π)230.999376
Commented by ajfour last updated on 20/Apr/21
If it is correct, it′s rather strange..  ⇒ I_0 =8((g_(cube) /g_(sphere) ))_A ((π/6))^(2/3)
Ifitiscorrect,itsratherstrange..I0=8(gcubegsphere)A(π6)2/3
Commented by mr W last updated on 20/Apr/21
i see this result as understandable.  the point A is closer to the center of  earth, so g_x  should be larger than g_0   at the surface of spherical earth. but  the mass of the cube is less   concentrated as the sphere, so g_x    should be smaller than g_0 . both effects  abrogate each other, so g_x  is almost  the same as g_0  at point A.
iseethisresultasunderstandable.thepointAisclosertothecenterofearth,sogxshouldbelargerthang0atthesurfaceofsphericalearth.butthemassofthecubeislessconcentratedasthesphere,sogxshouldbesmallerthang0.botheffectsabrogateeachother,sogxisalmostthesameasg0atpointA.
Commented by mr W last updated on 20/Apr/21
Commented by mr W last updated on 20/Apr/21
Commented by mr W last updated on 20/Apr/21
https://possiblywrong.wordpress.com/2011/09/09/if-the-earth-were-a-cube/

Leave a Reply

Your email address will not be published. Required fields are marked *