Menu Close

Question-138959




Question Number 138959 by mathlove last updated on 20/Apr/21
Answered by mathmax by abdo last updated on 20/Apr/21
a^(x^2 −1)  =e^((x^2 −1)loga)  ∼1+(x^2 −1)loga and  b^(x^3 −1) =e^((x^3 −1)logb)  ∼1+(x^3 −1)logb  c^(x^5 −1) ∼e^((x^5 −1)logc) ∼1+(x^5 −1)logc ⇒  f(x)=((a^(x^2 −1) −b^(x^3 −1) )/(c^(x^5 −1) −1))∼((1+(x^2 −1)loga−1−(x^3 −1)logb)/((x^5 −1)logc))  ∼(((x+1)loga−(x^2 +x+1)logb)/((1+x+x^2 +x^3  +x^4 )logc)) ⇒  lim_(x→1) f(x) =((2loga−3logb)/(5logc))
ax21=e(x21)loga1+(x21)logaandbx31=e(x31)logb1+(x31)logbcx51e(x51)logc1+(x51)logcf(x)=ax21bx31cx5111+(x21)loga1(x31)logb(x51)logc(x+1)loga(x2+x+1)logb(1+x+x2+x3+x4)logclimx1f(x)=2loga3logb5logc
Answered by mitica last updated on 21/Apr/21
lim_(x→) ((((a^(x^2 −1) −1)/(x^2 −1))(x−1)(x+1)−((b^(x^3 −1) −1)/(x^3 −1))(x−1)(x^2 +x+1))/(((c^(x^5 −1) −1)/(x^5 −1))(x−1)(x^4 +x^3 +x^2 +x+1)))=  =((2lna−3lnb)/(5lnc))
limxax211x21(x1)(x+1)bx311x31(x1)(x2+x+1)cx511x51(x1)(x4+x3+x2+x+1)==2lna3lnb5lnc

Leave a Reply

Your email address will not be published. Required fields are marked *