Question Number 139388 by mnjuly1970 last updated on 26/Apr/21
Answered by mr W last updated on 26/Apr/21
Commented by mr W last updated on 26/Apr/21
$$\frac{{b}/\mathrm{2}}{{y}}=\mathrm{cos}\:\alpha \\ $$$$\Rightarrow\frac{{b}^{\mathrm{2}} }{{y}^{\mathrm{2}} }=\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\alpha \\ $$$$\frac{{c}/\mathrm{2}}{{x}}=\mathrm{sin}\:\alpha \\ $$$$\Rightarrow\frac{{c}^{\mathrm{2}} }{{x}^{\mathrm{2}} }=\mathrm{4}\:\mathrm{sin}^{\mathrm{2}} \:\alpha \\ $$$$\frac{{b}^{\mathrm{2}} }{{y}^{\mathrm{2}} }+\frac{{c}^{\mathrm{2}} }{{x}^{\mathrm{2}} }=\mathrm{4}\left(\mathrm{cos}^{\mathrm{2}} \:\alpha+\mathrm{sin}^{\mathrm{2}} \:\alpha\right)=\mathrm{4} \\ $$
Commented by mnjuly1970 last updated on 27/Apr/21
$$\:{thanks}\:{alot}\:{sir}\:…. \\ $$