Question Number 139393 by BHOOPENDRA last updated on 26/Apr/21
Answered by Ar Brandon last updated on 26/Apr/21
$$\mathrm{I}=\int\frac{\mathrm{cos}{x}}{\mathrm{2cos}{x}+\mathrm{sin}{x}+\mathrm{3}}{dx},\:{t}=\mathrm{tan}\frac{{x}}{\mathrm{2}}\Rightarrow{dt}=\frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{2}}{dx} \\ $$$$\:\:=\int\frac{\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}{\mathrm{2}\left(\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\right)+\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }+\mathrm{3}}\centerdot\frac{\mathrm{2}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\:\:=\int\frac{\mathrm{2}\left(\mathrm{1}−{t}^{\mathrm{2}} \right)}{\mathrm{2}\left(\mathrm{1}−{t}^{\mathrm{2}} \right)+\mathrm{2}{t}+\mathrm{3}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\centerdot\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:\: \\ $$$$\:\:=\int\frac{\mathrm{2}\left(\mathrm{1}−{t}^{\mathrm{2}} \right)}{\left(\mathrm{5}+\mathrm{2}{t}+{t}^{\mathrm{2}} \right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{dt} \\ $$$${f}\left({t}\right)=\frac{\mathrm{2}\left(\mathrm{1}−{t}^{\mathrm{2}} \right)}{\left(\mathrm{5}+\mathrm{2}{t}+{t}^{\mathrm{2}} \right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}=\frac{{at}+{b}}{{t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{5}}+\frac{{ct}+{d}}{{t}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{\left({at}+{b}\right)\left({t}^{\mathrm{2}} +\mathrm{1}\right)+\left({t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{5}\right)\left({ct}+{d}\right)}{\left(\mathrm{5}+\mathrm{2}{t}+{t}^{\mathrm{2}} \right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)} \\ $$$${a}+{c}=\mathrm{0},\:{b}+{d}+\mathrm{2}{c}=−\mathrm{2},\:{a}+\mathrm{2}{d}+\mathrm{5}{c}=\mathrm{0},\:{b}+\mathrm{5}{d}=\mathrm{2} \\ $$$$\Rightarrow{b}=−\mathrm{2},\:{d}=\frac{\mathrm{4}}{\mathrm{5}},\:{c}=−\frac{\mathrm{2}}{\mathrm{5}},\:{a}=\frac{\mathrm{2}}{\mathrm{5}} \\ $$$$\mathrm{I}=\int\frac{\frac{\mathrm{2}}{\mathrm{5}}{t}−\mathrm{2}}{{t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{5}}{dt}−\int\frac{\frac{\mathrm{2}}{\mathrm{5}}{t}−\frac{\mathrm{4}}{\mathrm{5}}}{{t}^{\mathrm{2}} +\mathrm{1}}{dt} \\ $$